Displaying 401 – 420 of 1029

Showing per page

Le rôle des algèbres A de Wiener, A de Beurling et H 1 de Sobolev dans la théorie des nombres premiers généralisés de Beurling

Jean-Pierre Kahane (1998)

Annales de l'institut Fourier

La théorie des nombres premiers généralisés de Beurling fait intervenir N ( x ) , la fonction de décompte des entiers généralisés, P ( x ) , celle des nombres premiers généralisés, et ζ ( s ) , la fonction dzeta adaptée. Les hypothèses sur N ( x ) se traduisent en propriétés de ζ ( s ) , qui entraînent ou non le “théorème des nombres premiers” (TNP) P ( x ) x / log x ou “ l’inégalité de Tchebycheff” (IT) P ( x ) = O ( x / log x ) . L’article est consacré au rôle de la fonction i t ζ ( 1 + i t ) , en relation avec les algèbres A = L 1 ( ) , A = f sup y | x | | ( f ) ( x ) | L 1 ( + , d y ) et H 1 = L 2 ( , ( 1 + y 2 ) d y ) . On montre que l’hypothèse i t ζ ( 1 + i t ) exp ( - 2 | t | α ) H 1 entraîne (TNP) quand α < 2 et...

Levels of Distribution and the Affine Sieve

Alex Kontorovich (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

We discuss the notion of a “Level of Distribution” in two settings. The first deals with primes in progressions, and the role this plays in Yitang Zhang’s theorem on bounded gaps between primes. The second concerns the Affine Sieve and its applications.

L’hyperanneau des classes d’adèles

Alain Connes (2011)

Journal de Théorie des Nombres de Bordeaux

J’exposerai ici quelques résultats récents (obtenus en collaboration avec C. Consani [3], [4], [5], [6]) qui portent sur le cas limite de la “caractéristique 1 ”. Le but principal est de montrer que l’espace des classes d’adèles d’un corps global, qui jusqu’à présent n’a été considéré que comme un espace (non-commutatif), admet en fait une structure algébrique naturelle. Nous verrons également que la construction de l’anneau de Witt d’un anneau de caractéristique p > 1 admet un analogue en caractéristique...

Li coefficients for automorphic L -functions

Jeffrey C. Lagarias (2007)

Annales de l’institut Fourier

Xian-Jin Li gave a criterion for the Riemann hypothesis in terms of the positivity of a set of coefficients λ n ( n = 1 , 2 , ...

Linear differential equations and multiple zeta values. I. Zeta(2)

Michał Zakrzewski, Henryk Żołądek (2010)

Fundamenta Mathematicae

Certain generating fuctions for multiple zeta values are expressed as values at some point of solutions of linear meromorphic differential equations. We apply asymptotic expansion methods (like the WKB method and the Stokes operators) to solutions of these equations. In this way we give a new proof of the Euler formula ζ(2) = π²/6. In further papers we plan to apply this method to study some third order hypergeometric equation related to ζ(3).

Logarithmic derivative of the Euler Γ function in Clifford analysis.

Guy Laville, Louis Randriamihamison (2005)

Revista Matemática Iberoamericana

The logarithmic derivative of the Γ-function, namely the ψ-function, has numerous applications. We define analogous functions in a four dimensional space. We cut lattices and obtain Clifford-valued functions. These functions are holomorphic cliffordian and have similar properties as the ψ-function. These new functions show links between well-known constants: the Eurler gamma constant and some generalisations, ζR(2), ζR(3). We get also the Riemann zeta function and the Epstein zeta functions.

Currently displaying 401 – 420 of 1029