On p-class groups of cyclic extensions of prime degree p of number fields
Let be a number field generated by a complex root of a monic irreducible polynomial , , is a square free rational integer. We prove that if or and , then the number field is monogenic. If or , then the number field is not monogenic.
We study the compositum of all degree extensions of a number field in a fixed algebraic closure. We show contains all subextensions of degree less than if and only if . We prove that for there is no bound on the degree of elements required to generate finite subextensions of . Restricting to Galois subextensions, we prove such a bound does not exist under certain conditions on divisors of , but that one can take when is prime. This question was inspired by work of Bombieri and...
The main theorem gives necessary conditions and sufficient conditions for to have class number prime to 3. These conditions involve only the rational prime factorization of and congruences mod 27 of the prime factors of . They give necessary and sufficient conditions for most .
We study the ramification properties of the extensions under the hypothesis that is odd and if than either or ( and are the exponents with which divides and ). In particular we determine the higher ramification groups of the completed extensions and the Artin conductors of the characters of their Galois group. As an application, we give formulas for the -adique valuation of the discriminant of the studied global extensions with .
A subfield K ⊆ ℚ̅ has the Bogomolov property if there exists a positive ε such that no non-torsion point of has absolute logarithmic height below ε. We define a relative extension L/K to be Bogomolov if this holds for points of . We construct various examples of extensions which are and are not Bogomolov. We prove a ramification criterion for this property, and use it to show that such extensions can always be constructed if some rational prime has bounded ramification index in K.
We propose a definition of sign of imaginary quadratic fields. We give an example of such functions, and use it to define new invariants that are roots of the classical Ramachandra invariants. Also we introduce signed ordinary distributions and compute their signed cohomology by using Anderson's theory of double complex.