Displaying 321 – 340 of 453

Showing per page

Principalization algorithm via class group structure

Daniel C. Mayer (2014)

Journal de Théorie des Nombres de Bordeaux

For an algebraic number field K with 3 -class group Cl 3 ( K ) of type ( 3 , 3 ) , the structure of the 3 -class groups Cl 3 ( N i ) of the four unramified cyclic cubic extension fields N i , 1 i 4 , of K is calculated with the aid of presentations for the metabelian Galois group G 3 2 ( K ) = Gal ( F 3 2 ( K ) | K ) of the second Hilbert 3 -class field F 3 2 ( K ) of K . In the case of a quadratic base field K = ( D ) it is shown that the structure of the 3 -class groups of the four S 3 -fields N 1 , ... , N 4 frequently determines the type of principalization of the 3 -class group of K in N 1 , ... , N 4 . This provides...

Real quadratic number fields with metacyclic Hilbert 2 -class field tower

Said Essahel, Ahmed Dakkak, Ali Mouhib (2019)

Mathematica Bohemica

We begin by giving a criterion for a number field K with 2-class group of rank 2 to have a metacyclic Hilbert 2-class field tower, and then we will determine all real quadratic number fields ( d ) that have a metacyclic nonabelian Hilbert 2 -class field tower.

Currently displaying 321 – 340 of 453