Displaying 361 – 380 of 453

Showing per page

Sur la structure des groupes de classes relatives. Avec un appendice d'exemples numériques par T. Berthier

Georges Gras (1993)

Annales de l'institut Fourier

Suite aux travaux de R. Schoof et de H.W. Lenstra–R. Schoof, nous donnons une méthode permettant de trouver, pour tout p premier ne divisant pas [ F : ] , un système de générateurs du p -groupe des classes relatives du corps abélien imaginaire F , ceci avec la seule connaissance de nombres de Bernoulli B 1 ( ψ - 1 ) . Des exemples numériques sont donnés pour p = 3 et p = 5 , dans le cadre des extensions cycliques de degré 2 et 4. Le premier exemple de p -groupe des classes possédant une χ -composante non monogène (pour un caractère...

Sur le 2 -groupe de classes des corps multiquadratiques réels

Ali Mouhib, Abbas Movahhedi (2005)

Journal de Théorie des Nombres de Bordeaux

Soient p 1 , p 2 , . . . , p n des nombres premiers distincts - 1 ( m o d 4 ) , d : = p 1 p 2 p n et k n = Q ( p 1 , p 2 , . . . , p n ) . On peut approcher le 2 -rang du groupe de classes des corps k n en étudiant celui du corps k m ( d ) pour un entier m < n . Dans cet article, on traite le cas où m = 2 ou 3 . Comme application, on déduit que le rang du 2 -groupe de classes de k 4 est au moins égal à deux (on savait déjà grâce à un résultat de Fröhlich que le groupe de classes de k 4 est toujours d’ordre pair). On en déduit également la liste de tous les corps multiquadratiques k n ayant un 2 -groupe de classes...

Sur les -classes d’idéaux dans les extensions cycliques relatives de degré premier

Georges Gras (1973)

Annales de l'institut Fourier

Soit H ( K ) le -groupe des classes d’idéaux d’une extension K / k cyclique de degré premier et soit H i = Ker ( σ - 1 ) i ( σ générateur de Gal ( K / k ) ). Un procédé généralisant la formule de Chevalley (formule des classes “ambiges”) permet de déterminer H i + 1 et l’ordre de H i + 1 / H i à partir de H i . On obtient donc une méthode qui permet, d’une part, une détermination effective de la structure de H ( K ) et, d’autre part, une étude générale des problèmes de -classes d’idéaux.

Sur les -classes d’idéaux dans les extensions cycliques relatives de degré premier

Georges Gras (1973)

Annales de l'institut Fourier

Soit H ( K ) le -groupe des classes d’idéaux d’une extension K / k cyclique de degré premier et soit H i = Ker ( σ - 1 ) i ( σ générateur de Gal ( K / k ) ). Un procédé généralisant la formule de Chevalley (formule des classes “ambiges”) permet de déterminer H i + 1 et l’ordre de H i + 1 / H i à partir de H i . On obtient donc une méthode qui permet, d’une part, une détermination effective de la structure de H ( K ) et, d’autre part, une étude générale des problèmes de -classes d’idéaux.

Sur les unités des extensions cubiques cycliques non ramifiées sur certains sous-corps de Q ( d , - 3 )

Abdelmalek Azizi, Mohamed Ayadi, Moulay Chrif Ismaili, Mohamed Talbi (2009)

Annales mathématiques Blaise Pascal

Soient k le corps quadratique réel Q ( d ) (respectivement le corps biquadratique Q ( d , - 3 ) ), d un entier positif sans facteur carré, K une extension cubique cyclique non ramifiée de k , diédrale sur Q totalement réelle, (respectivement diédrale sur Q ( - 3 ) .)On constate qu’on a deux structures possibles pour le groupe des unités U K de K , notées a l p h a et d e l t a .

Sur un problème de capitulation du corps ( p 1 p 2 , i ) dont le 2 -groupe de classes est élémentaire

Abdelmalek Azizi, Abdelkader Zekhnini, Mohammed Taous (2014)

Czechoslovak Mathematical Journal

Soient p 1 p 2 1 ( mod 8 ) des nombres premiers tels que, ( p 1 p 2 ) = - 1 et ( 2 a + b ) = - 1 , où p 1 p 2 = a 2 + b 2 . Soient i = - 1 , d = p 1 p 2 , 𝕜 = ( d , i ) , 𝕜 2 ( 1 ) le 2-corps de classes de Hilbert de 𝕜 et 𝕜 ( * ) = ( p 1 , p 2 , i ) le corps de genres de 𝕜 . La 2-partie C 𝕜 , 2 du groupe de classes de 𝕜 est de type ( 2 , 2 , 2 ) , par suite 𝕜 2 ( 1 ) contient sept extensions quadratiques non ramifiées 𝕂 j / 𝕜 et sept extensions biquadratiques non ramifiées 𝕃 j / 𝕜 . Dans ce papier on s’intéresse à déterminer ces quatorze extensions, le groupe C 𝕜 , 2 et à étudier la capitulation des 2-classes d’idéaux de 𝕜 dans ces extensions.

Symboles des restes quadratiques des discriminants dans les extensions modérément ramifiées

A. Movahhedi, M. Zahidi (2000)

Acta Arithmetica

1. Introduction. Soit L un corps de nombres de degré n sur le corps ℚ des nombres rationnels de discriminant D = D L / . Si l’entier D n’est pas un carré, on note d le discriminant du corps quadratique ℚ(√D), sinon on pose d=1. Soit p un nombre premier non-ramifié dans L de sorte que le symbole des restes quadratiques (D/p) soit non-nul. Un théorème déjà ancien dû à A. Pellet ([3, page 245]), L. Stickelberger et G. Voronoï montre que la parité du nombre g d’idéaux premiers de L au-dessus de p est déterminée...

Tate sequences and lower bounds for ranks of class groups

Cornelius Greither (2013)

Acta Arithmetica

Tate sequences play a major role in modern algebraic number theory. The extension class of a Tate sequence is a very subtle invariant which comes from class field theory and is hard to grasp. In this short paper we demonstrate that one can extract information from a Tate sequence without knowing the extension class in two particular situations. For certain totally real fields K we will find lower bounds for the rank of the ℓ-part of the class group Cl(K), and for certain CM fields we will find lower...

The class number one problem for some non-abelian normal CM-fields of degree 24

F. Lemmermeyer, S. Louboutin, R. Okazaki (1999)

Journal de théorie des nombres de Bordeaux

We determine all the non-abelian normal CM-fields of degree 24 with class number one, provided that the Galois group of their maximal real subfields is isomorphic to 𝒜 4 , the alternating group of degree 4 and order 12 . There are two such fields with Galois group 𝒜 4 × 𝒞 2 (see Theorem 14) and at most one with Galois group SL 2 ( 𝔽 3 ) (see Theorem 18); if the generalized Riemann hypothesis is true, then this last field has class number 1 .

Currently displaying 361 – 380 of 453