Displaying 101 – 120 of 453

Showing per page

Corps diédraux à multiplication complexe principaux

Yann Lefeuvre (2000)

Annales de l'institut Fourier

Nous déterminons tous les corps diédraux à multiplication complexe de nombres de classes relatif un, puis ceux de nombre de classes un : il y a 32 tels corps non-abéliens principaux. C’est le premier exemple, dans ce cadre assez général, de résolution du problème de nombre de classes un pour les corps galoisiens à multiplication complexe avec un type de groupe de Galois non-abélien fixé.

Corps sextiques primitifs

Michel Olivier (1990)

Annales de l'institut Fourier

Nous décrivons quatre tables de corps sextiques primitifs (une par signature). Les tables fournissent pour chaque corps, le discriminant, le groupe de Galois de la clôture galoisienne et un polynôme définissant le corps.

Counting discriminants of number fields

Henri Cohen, Francisco Diaz y Diaz, Michel Olivier (2006)

Journal de Théorie des Nombres de Bordeaux

For each transitive permutation group G on n letters with n 4 , we give without proof results, conjectures, and numerical computations on discriminants of number fields L of degree n over such that the Galois group of the Galois closure of L is isomorphic to G .

Crible et 3-rang des corps quadratiques

Karim Belabas (1996)

Annales de l'institut Fourier

Considérons le cardinal h 3 * ( Δ ) de l’ensemble des racines cubiques de l’unité dans le groupe des classes de ( Δ ) , où Δ est un discriminant fondamental. Un résultat de Davenport et Heilbronn calcule la valeur moyenne de ces nombres quand Δ varie. On obtient ici géométriquement une borne explicite pour le reste, avec la possibilité supplémentaire de restreindre les Δ à des progressions arithmétiques. Des techniques de crible permettent alors d’évaluer la 3-partie des ( ± P k ) , où P k est pseudo-premier d’ordre k . On...

Cryptography based on number fields with large regulator

Johannes Buchmann, Markus Maurer, Bodo Möller (2000)

Journal de théorie des nombres de Bordeaux

We explain a variant of the Fiat-Shamir identification and signature protocol that is based on the intractability of computing generators of principal ideals in algebraic number fields. We also show how to use the Cohen-Lenstra-Martinet heuristics for class groups to construct number fields in which computing generators of principal ideals is intractable.

Currently displaying 101 – 120 of 453