Displaying 621 – 640 of 3416

Showing per page

Construction of Ray class fields by elliptic units

Reinhard Schertz (1997)

Journal de théorie des nombres de Bordeaux

From complex multiplication we know that elliptic units are contained in certain ray class fields over a quadratic imaginary number field K , and Ramachandra [3] has shown that these ray class fields can even be generated by elliptic units. However the generators constructed by Ramachandra involve very complicated products of high powers of singular values of the Klein form defined below and singular values of the discriminant Δ . It is the aim of this paper to show, that in many cases a generator...

Construire un noyau de la fonctorialité ? Le cas de l’induction automorphe sans ramification de GL 1 à GL 2

Laurent Lafforgue (2010)

Annales de l’institut Fourier

Le but de cet article est de présenter une nouvelle méthode purement adélique pour réaliser le principe de fonctorialité de Langlands dans le cas de l’induction automorphe sans ramification de GL 1 à GL 2 sur les corps de fonctions. On construit sur le produit des groupes adéliques GL 1 et GL 2 un noyau de la fonctorialité. C’est une version “en famille” et locale de la construction par les modèles de Whittaker globaux, utilisée classiquement dans les “théorèmes réciproques” de Weil et Piatetski-Shapiro....

Contribution à l'étude des corps abéliens absolus de degré premier impair

Jean-Jacques Payan (1965)

Annales de l'institut Fourier

Soit k une extension algébrique du corps des nombres rationnels, galoisienne et de degré premier . Si θ 0 , θ 1 , ... , θ - 1 désignent des éléments primitifs conjugués de k , on note θ u , j , j = 1 , 2 , ... , - 1 , leurs résolvantes de Lagrange. Les nombres μ j = θ u , j sont des éléments primitifs conjugués du corps C ( ) des racines -ièmes de l’unité.La première partie est consacrée à la caractérisation de ces μ , on en déduit une paramétrisation des polynômes abéliens de degré . On s’intéresse ensuite aux μ j associés à des éléments θ u entiers, ce qui permet...

Corps diédraux à multiplication complexe principaux

Yann Lefeuvre (2000)

Annales de l'institut Fourier

Nous déterminons tous les corps diédraux à multiplication complexe de nombres de classes relatif un, puis ceux de nombre de classes un : il y a 32 tels corps non-abéliens principaux. C’est le premier exemple, dans ce cadre assez général, de résolution du problème de nombre de classes un pour les corps galoisiens à multiplication complexe avec un type de groupe de Galois non-abélien fixé.

Corps quadratiques, G L 2 ( 𝐙 ) et polynômes de Dickson

Michel Kervaire (1996)

Annales de l'institut Fourier

On caractérise les puissances n -ièmes dans un corps quadratique réel et dans G L 2 ( Z ) à l’aide des polynômes de Dickson. Ces mêmes polynômes sont utilisés pour obtenir des renseignements sur l’indice du groupe des unités d’un ordre non-maximal dans le groupe de toutes les unités d’un corps quadratique réel. Le texte est détaillé et élémentaire.

Currently displaying 621 – 640 of 3416