Displaying 121 – 140 of 726

Showing per page

de Rham Theory for Tame Stacks and Schemes with Linearly Reductive Singularities

Matthew Satriano (2012)

Annales de l’institut Fourier

We prove that the Hodge-de Rham spectral sequence for smooth proper tame Artin stacks in characteristic p (as defined by Abramovich, Olsson, and Vistoli) which lift mod p 2 degenerates. We push the result to the coarse spaces of such stacks, thereby obtaining a degeneracy result for schemes which are étale locally the quotient of a smooth scheme by a finite linearly reductive group scheme.

Decomposability criterion for linear sheaves

Marcos Jardim, Vitor Silva (2012)

Open Mathematics

We establish a decomposability criterion for linear sheaves on ℙn. Applying it to instanton bundles, we show, in particular, that every rank 2n instanton bundle of charge 1 on ℙn is decomposable. Moreover, we provide an example of an indecomposable instanton bundle of rank 2n − 1 and charge 1, thus showing that our criterion is sharp.

Deformation Theory (Lecture Notes)

M. Doubek, Martin Markl, Petr Zima (2007)

Archivum Mathematicum

First three sections of this overview paper cover classical topics of deformation theory of associative algebras and necessary background material. We then analyze algebraic structures of the Hochschild cohomology and describe the relation between deformations and solutions of the corresponding Maurer-Cartan equation. In Section  we generalize the Maurer-Cartan equation to strongly homotopy Lie algebras and prove the homotopy invariance of the moduli space of solutions of this equation. In the last...

Currently displaying 121 – 140 of 726