Loading [MathJax]/extensions/MathZoom.js
Displaying 101 –
120 of
170
In this paper we construct and study an action of the affine braid group associated with a semi-simple algebraic group on derived categories of coherent sheaves on various varieties related to the Springer resolution of the nilpotent cone. In particular, we describe explicitly the action of the Artin braid group. This action is a “categorical version” of Kazhdan-Lusztig-Ginzburg’s construction of the affine Hecke algebra, and is used in particular by the first author and I. Mirković in the course...
Let be a proper smooth variety over a field of characteristic and an effective divisor on with multiplicity. We introduce a generalized Albanese variety Alb of of modulus , as higher dimensional analogue of the generalized Jacobian with modulus of Rosenlicht-Serre. Our construction is algebraic. For we give a Hodge theoretic description.
For a complex projective manifold Gromov-Witten invariants can be constructed either algebraically or symplectically. Using the versions of Gromov-Witten theory by Behrend and Fantechi on the algebraic side and by the author on the symplectic side, we prove that both points of view are equivalent
The double point relation defines a natural theory of algebraic cobordism for bundles on varieties. We construct a simple basis (over ) of the corresponding cobordism groups over Spec() for all dimensions of varieties and ranks of bundles. The basis consists of split bundles over products of projective spaces. Moreover, we prove the full theory for bundles on varieties is an extension of scalars of standard algebraic cobordism.
Given a compact nonsingular real algebraic variety we study the algebraic cohomology classes given by algebraic cycles algebraically equivalent to zero.
Let be a field. We compute the set ofnaivehomotopy classes of pointed -scheme endomorphisms of the projective line . Our result compares well with Morel’s computation in [11] of thegroup of -homotopy classes of pointed endomorphisms of : the set admits an a priori monoid structure such that the canonical map is a group completion.
We relate -equivalence on tori with Voevodsky’s theory of homotopy invariant Nisnevich sheaves with transfers and effective motivic complexes.
Currently displaying 101 –
120 of
170