Nonarchimedean dynamical systems
Inspired by Manin’s approach towards a geometric interpretation of Arakelov theory at infinity, we interpret in this paper non-Archimedean local intersection numbers of linear cycles in with the combinatorial geometry of the Bruhat-Tits building associated to .
Jordan, Rotger and de Vera-Piquero proved that Shimura curves have no points rational over imaginary quadratic fields under a certain assumption. In this article, we extend their results to the case of number fields of higher degree. We also give counterexamples to the Hasse principle on Shimura curves.
In this paper we prove some non-solvable base change for Hilbert modular representations, and we use this result to show the meromorphic continuation to the entire complex plane of the zeta functions of some twisted quaternionic Shimura varieties. The zeta functions of the twisted quaternionic Shimura varieties are computed at all places.
We give an infinite family of curves of genus 2 whose Jacobians have non-trivial members of the Tate-Shafarevich group for descent via Richelot isogeny. We prove this by performing a descent via Richelot isogeny and a complete 2-descent on the isogenous Jacobian. We also give an explicit model of an associated family of surfaces which violate the Hasse principle.
In this paper, we give a numerical characterization of nef arithmetic -Cartier divisors of -type on an arithmetic surface. Namely an arithmetic -Cartier divisor of -type is nef if and only if is pseudo-effective and .