Displaying 481 – 500 of 1550

Showing per page

Generalised Hermite constants, Voronoi theory and heights on flag varieties

Bertrand Meyer (2009)

Bulletin de la Société Mathématique de France

This paper explores the study of the general Hermite constant associated with the general linear group and its irreducible representations, as defined by T. Watanabe. To that end, a height, which naturally applies to flag varieties, is built and notions of perfection and eutaxy characterising extremality are introduced. Finally we acquaint some relations (e.g., with Korkine–Zolotareff reduction), upper bounds and computation relative to these constants.

Generators and integer points on the elliptic curve y² = x³ - nx

Yasutsugu Fujita, Nobuhiro Terai (2013)

Acta Arithmetica

Let E be an elliptic curve over the rationals ℚ given by y² = x³ - nx with a positive integer n. We consider first the case where n = N² for a square-free integer N. Then we show that if the Mordell-Weil group E(ℚ ) has rank one, there exist at most 17 integer points on E. Moreover, we show that for some parameterized N a certain point P can be in a system of generators for E(ℚ ), and we determine the integer points in the group generated by the point P and the torsion points. Secondly, we consider...

Genres de Todd et valeurs aux entiers des dérivées de fonctions L

Christophe Soulé (2005/2006)

Séminaire Bourbaki

La géométrie d’Arakelov étudie les fibrés vectoriels sur une variété algébrique X définie sur les entiers, munis d’une métrique hermitienne lisse sur le fibré holomorphe associé (sur la variété analytique des points complexes de X ). Un théorème de “Riemann-Roch arithmétique” calcule le covolume du réseau euclidien des sections globales d’un tel fibré. Dans cette formule, le genre de Todd comporte un terme complémentaire, défini par une série formelle dont les coefficients font intervenir les valeurs...

Géométrie, points entiers et courbes entières

Pascal Autissier (2009)

Annales scientifiques de l'École Normale Supérieure

Soit X une variété projective sur un corps de nombres K (resp. sur ). Soit H la somme de « suffisamment de diviseurs positifs » sur X . On montre que tout ensemble de points quasi-entiers (resp. toute courbe entière) dans X - H est non Zariski-dense.

Geometry of an étale covering of the p -adic upper half plane

Jeremy Teitelbaum (1990)

Annales de l'institut Fourier

We describe the rigid geometry of the first layer in the tower of coverings of the p -adic upper half plane constructed by Drinfeld. Using our results, we describe the stable fiber at p of certain Shimura curves.

Currently displaying 481 – 500 of 1550