Displaying 501 – 520 of 1550

Showing per page

GLS: New class of generalized Legendre sequences with optimal arithmetic cross-correlation

Huijuan WANG, Qiaoyan WEN, Jie ZHANG (2013)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

The Legendre symbol has been used to construct sequences with ideal cross-correlation, but it was never used in the arithmetic cross-correlation. In this paper, a new class of generalized Legendre sequences are described and analyzed with respect to their period, distributional, arithmetic cross-correlation and distinctness properties. This analysis gives a new approach to study the connection between the Legendre symbol and the arithmetic cross-correlation. In the end of this paper, possible application...

Greatest common divisors of u - 1 , v - 1 in positive characteristic and rational points on curves over finite fields

Pietro Corvaja, Umberto Zannier (2013)

Journal of the European Mathematical Society

In our previous work we proved a bound for the g c d ( u 1 , v 1 ) , for S -units u , v of a function field in characteristic zero. This generalized an analogous bound holding over number fields, proved in [3]. As pointed out by Silverman, the exact analogue does not work for function fields in positive characteristic. In the present work, we investigate possible extensions in that direction; it turns out that under suitable assumptions some of the results still hold. For instance we prove Theorems 2 and 3 below, from...

Hasse-Witt matrices and Kummer extension

Francis J. Sullivan (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

A simple calculation of the Hasse-Witt matrix is used to give examples of curves which are Kummer coverings of the projective line and which have easily determined p-rank. A family of curve carrying non-classical vector bundles of rank 2 is also given.

Hauteur des correspondances de Hecke

Pascal Autissier (2003)

Bulletin de la Société Mathématique de France

L’objectif de cet article est de mesurer la complexité arithmétique de la courbe modulaire X 0 ( N ) en fonction du niveau N . Pour ce faire, on utilise un morphisme fini (de degré 1 sur son image) de X 0 ( N ) vers une variété fixe X ( 1 ) × X ( 1 ) et on calcule la hauteur au sens d’Arakelov de l’image T N de ce morphisme. La hauteur employée est directement reliée à la hauteur de Faltings des courbes elliptiques. On a besoin pour cela de considérer une théorie d’Arakelov pour les faisceaux inversibles hermitiens L 1 2 -singuliers (au...

Hauteurs des sous-schémas de dimension nulle de l'espace projectif

Hugues Randriambololona (2003)

Annales de l'Institut Fourier

Dans ce texte on introduit une notion de hauteur pour les sous-schémas d'une variété arithmétique. Dans le cas particulier d'un sous-schéma de dimension (générique) nulle de l'espace projectif, on donne pour ces hauteurs une estimation qui prend la forme d'une formule de Hilbert-Samuel arithmétique, généralisant ainsi des résultats de M. Laurent sur les hauteurs de matrices d'interpolation. Les trois premiers termes du développement asymptotique ainsi obtenu peuvent s'analyser...

Currently displaying 501 – 520 of 1550