Displaying 621 – 640 of 1550

Showing per page

Le problème de Lehmer relatif en dimension supérieure

Emmanuel Delsinne (2009)

Annales scientifiques de l'École Normale Supérieure

Nous généralisons en dimension supérieure un théorème d’Amoroso et Zannier concernant le problème de Lehmer relatif. Nous minorons la hauteur d’un point d’un tore en fonction de son indice d’obstruction sur ab , l’extension abélienne maximale de , à condition qu’il ne soit pas contenu dans une sous-variété de torsion de petit degré. Nous en déduisons une minoration du minimum essentiel d’une sous-variété non contenue dans un sous-groupe algébrique propre en fonction de son indice d’obstruction sur...

Les espaces de Berkovich sont angéliques

Jérôme Poineau (2013)

Bulletin de la Société Mathématique de France

Bien que les espaces de Berkovich définis sur un corps trop gros ne soient, en général, pas métrisables, nous montrons que leur topologie reste en grande partie gouvernée par les suites : tout point adhérent à une partie est limite d’une suite de points de cette partie et les parties compactes sont séquentiellement compactes. Notre preuve utilise de façon essentielle l’extension des scalaires et nous en étudions certaines propriétés. Nous montrons qu’un point d’un disque peut être défini sur un...

Les espaces de Berkovich sont excellents

Antoine Ducros (2009)

Annales de l’institut Fourier

Dans ce texte, nous commençons par étudier les anneaux locaux d’un (bon) espace de Berkovich du point de vue de l’algèbre commutative  : nous montrons qu’ils sont excellents  ; nous nous intéressons au comportement de certaines de leurs propriétés éventuelles ( R m , S m , etc.) par extension des scalaires, et pour ce faire nous introduisons la notion d’extension analytiquement séparable d’un corps ultramétrique complet  ; nous établissons enfin à leur sujet des théorèmes de type GAGA pour les schémas...

Les motifs de Tate et les opérateurs de périodicité de Connes

Abhishek Banerjee (2014)

Annales mathématiques Blaise Pascal

Dans cet article, nous définissons une catégorie M o t ˜ C des motifs sur une catégorie monoïdale symétrique ( C , , 1 ) vérifiant certaines hypothèses. Le rôle des espaces sur ( C , , 1 ) est joué par les monoïdes (non necessairement commutatifs) dans C . Pour définir les morphismes dans M o t ˜ C , nous utilisons des classes dans les groupes d’homologie cyclique bivariante. Le but est de montrer que les opérateurs de périodicité de Connes induisent des morphismes M 𝕋 2 M dans M o t ˜ C , où 𝕋 est le motif de Tate dans M o t ˜ C .

Currently displaying 621 – 640 of 1550