Displaying 61 – 80 of 109

Showing per page

Points on elliptic curves parametrizing dynamical Galois groups

Wade Hindes (2013)

Acta Arithmetica

We show how rational points on certain varieties parametrize phenomena arising in the Galois theory of iterates of quadratic polynomials. As an example, we characterize completely the set of quadratic polynomials x²+c whose third iterate has a "small" Galois group by determining the rational points on some elliptic curves. It follows as a corollary that the only integer value with this property is c=3, answering a question of Rafe Jones. Furthermore, using a result of Granville's on the rational...

Points rationnels de la courbe modulaire X 0 ( 169 )

Jean-François Mestre (1980)

Annales de l'institut Fourier

On démontre que les seuls points rationnels sur Q de la courbe X 0 ( 169 ) sont les pointes.En conséquence, il n’existe pas de courbe elliptique définie sur Q possédant un sous-groupe cyclique rationnel d’ordre 13 2 .

Points rationnels et groupes fondamentaux : applications de la cohomologie p -adique

Antoine Chambert-loir (2002/2003)

Séminaire Bourbaki

Je présenterai des résultats de T. Ekedahl et H. Esnault sur les variétés projectives lisses sur un corps de caractéristique strictement positive, disons p , dont deux points peuvent être liés par une chaîne de courbes rationnelles, par exemple faiblement unirationnelles, ou de Fano. Notamment : 1) sur un corps fini, de telles variétés ont un point rationnel, résultat qui généralise le théorème de Chevalley-Warning ; 2) sur un corps algébriquement clos, de telles variétés ont un groupe fondamental...

Points rationnels et méthode de Chabauty elliptique

Sylvain Duquesne (2003)

Journal de théorie des nombres de Bordeaux

La méthode de Chabauty elliptique permet de calculer les points rationnels sur une courbe définie sur un corps de nombres lorsque le théorème de Chabauty ne s’applique pas, c’est à dire lorsque le rang de la jacobienne est supérieur au genre de la courbe. Nous exposons cette méthode et nous la généralisons dans de nouveaux cas en écrivant une version explicite du théorème de préparation de Weierstrass en 2 variables. En particulier nous calculons tous les points rationnels d’une courbe de genre...

Points rationnels sur les quotients d’Atkin-Lehner de courbes de Shimura de discriminant p q

Florence Gillibert (2013)

Annales de l’institut Fourier

Soient p et q deux nombres premiers distincts et X p q / w q le quotient de la courbe de Shimura de discriminant p q par l’involution d’Atkin-Lehner w q . Nous décrivons un moyen permettant de vérifier un critère de Parent et Yafaev en grande généralité pour prouver que si p et q satisfont des conditions de congruence explicites, connues comme les conditions du cas non ramifié de Ogg, et si p est assez grand par rapport à q , alors le quotient X p q / w q n’a pas de point rationnel non spécial.

Currently displaying 61 – 80 of 109