On the Arithmetic of Special Values of L Functions.
Here we give an explicit polynomial bound (in term of and not depending on the prime ) for the order of the automorphism group of a minimal surface of general type defined over a field of characteristic .
Here we give an upper polynomial bound (as function of but independent on ) for the order of a -subgroup of with minimal surface of general type defined over the field with . Then we discuss the non existence of similar bounds for the dimension as -vector space of the structural sheaf of the scheme .
Given an elliptic curve E over a function field K = ℚ(T₁,...,Tₙ), we study the behavior of the canonical height of the specialized elliptic curve with respect to the height of ω ∈ ℚⁿ. We prove that there exists a uniform nonzero lower bound for the average of the quotient over all nontorsion P ∈ E(K).
In [6], S. Bloch conjectures a formula for the Artin conductor of the ℓ-adic etale cohomology of a regular model of a variety over a local field and proves it for a curve. The formula, which we call the conductor formula of Bloch, enables us to compute the conductor that measures the wild ramification by using the sheaf of differential 1-forms. In this paper, we prove the formula in arbitrary dimension under the assumption that the reduced closed fiber has normal crossings.