Relations among Donaldson polynomials of certain algebraic surfaces, II.
We give a lower bound for the Seshadri constants of ample vector bundles which depends only on the numerical properties of the Chern classes and on a “stability” condition.
2000 Mathematics Subject Classification: 14C20, 14E25, 14J26.The famous Nagata Conjecture predicts the lowest degree of a plane curve passing with prescribed multiplicities through given points in general position. We explain how this conjecture extends naturally via multiple point Seshadri constants to ample line bundles on arbitrary surfaces. We show that if there exist curves of unpredictable low degree, then they must have equal multiplicities in all but possibly one of the given points. We...
We consider the representation theory for a class of log-canonical surface singularities in the sense of reflexive (or equivalently maximal Cohen-Macaulay) modules and in the sense of finite dimensional representations of the local fundamental group. A detailed classification and enumeration of the indecomposable reflexive modules is given, and we prove that any reflexive module admits an integrable connection and hence is induced from a finite dimensional representation of the local fundamental...
Nous présentons une méthode qui permet de calculer le transformée de Nash (et sa normalisation) d’une singularité de surface pour laquelle on dispose d’une résolution explicite. Comme exemple nous calculons la résolution des points doubles rationnels obtenue par itération du transformé de Nash normalisé.
On considère l’espace de modules des fibrés stables de rang sur , de classes de Chern , étant un corps algébriquement clos de caractéristique quelconque. Si () ou (), on sait ([7], [9]) que a une composante irréductible dont le point générique a la cohomologie naturelle. Nous avons calculé ([16]) la résolution minimale de . Dans cet article, nous voulons déterminer celle de si où est le plus petit entier tel que . Par un procédé standard rappelé dans [16], on se ramène à des...
Le problème des arcs de Nash pour les singularités normales de surfaces affirme qu’il y aurait autant de familles d’arcs sur un germe de surface singulier que de diviseurs essentiels sur . Il est connu que ce problème se réduit à étudier les singularités quasi-rationnelles. L’objet de cet article est de répondre positivement au problème de Nash pour une famille d’hypersurfaces quasi-rationnelles non rationnelles. On applique la même méthode pour répondre positivement à ce problème dans les cas...
Nous étudions une condition d’équisingularité définie pour une famille de singularités de surface normale par l’existence d’une résolution simultanée très faible et par une condition supplémentaire sur les faisceaux pluricanoniques relatifs. Nous donnons dans le cas d’une famille de singularités rationnelles une condition nécessaire et suffisante portant sur les singularités des fibres pour avoir équisingularité.
We characterize minimal free resolutions of homogeneous bundles on . Besides we study stability and simplicity of homogeneous bundles on by means of their minimal free resolutions; in particular we give a criterion to see when a homogeneous bundle is simple by means of its minimal resolution in the case the first bundle of the resolution is irreducible.
La conjecture de « dualité étrange » de Le Potier donne un isomorphisme entre l’espace des sections du fibré déterminant sur deux espaces de modules différents de faisceaux semi-stables sur le plan projectif . On considère deux classes orthogonales dans l’algèbre de Grothendieck telles que est de rang strictement positif et est de rang zéro, et on note et les espaces de modules de faisceaux semi-stables de classe , respectivement sur . Il existe sur (resp. ) un fibré déterminant...