Linear preservers of regular matrices over general Boolean algebras.
Let be the set of all real matrices. A matrix is said to be row-dense if there are no zeros between two nonzero entries for every row of this matrix. We find the structure of linear functions that preserve or strongly preserve row-dense matrices, i.e., is row-dense whenever is row-dense or is row-dense if and only if is row-dense, respectively. Similarly, a matrix is called a column-dense matrix if every column of is a column-dense vector. At the end, the structure of linear...
We introduce linear transformations of Euclidean topological spaces given by a transformation matrix. Next, we prove selected properties and basic arithmetic operations on these linear transformations. Finally, we show that a linear transformation given by an invertible matrix is a homeomorphism.
We prove a number of theorems concerning various notions used in the theory of continuity of barycentric coordinates.
We consider a commutative ring with identity and a positive integer . We characterize all the 3-tuples of linear transforms over , having the “circular convolution” property, i.eṡuch that for all .
We prove that the linearization functor from the category of Hamiltonian -actions with group-valued moment maps in the sense of Lu, to the category of ordinary Hamiltonian - actions, preserves products up to symplectic isomorphism. As an application, we give a new proof of the Thompson conjecture on singular values of matrix products and extend this result to the case of real matrices. We give a formula for the Liouville volume of these spaces and obtain from it a hyperbolic version of the Duflo...
We consider some random band matrices with band-width whose entries are independent random variables with distribution tail in . We consider the largest eigenvalues and the associated eigenvectors and prove the following phase transition. On the one hand, when , the largest eigenvalues have order , are asymptotically distributed as a Poisson process and their associated eigenvectors are essentially carried by two coordinates (this phenomenon has already been remarked for full matrices by Soshnikov...
We propose a new localization result for the leading eigenvalue and eigenvector of a symmetric matrix . The result exploits the Frobenius inner product between and a given rank-one landmark matrix . Different choices for may be used, depending on the problem under investigation. In particular, we show that the choice where is the all-ones matrix allows to estimate the signature of the leading eigenvector of , generalizing previous results on Perron-Frobenius properties of matrices with...