Displaying 1101 – 1120 of 2599

Showing per page

Linear preservers of row-dense matrices

Sara M. Motlaghian, Ali Armandnejad, Frank J. Hall (2016)

Czechoslovak Mathematical Journal

Let 𝐌 m , n be the set of all m × n real matrices. A matrix A 𝐌 m , n is said to be row-dense if there are no zeros between two nonzero entries for every row of this matrix. We find the structure of linear functions T : 𝐌 m , n 𝐌 m , n that preserve or strongly preserve row-dense matrices, i.e., T ( A ) is row-dense whenever A is row-dense or T ( A ) is row-dense if and only if A is row-dense, respectively. Similarly, a matrix A 𝐌 n , m is called a column-dense matrix if every column of A is a column-dense vector. At the end, the structure of linear...

Linear Transformations of Euclidean Topological Spaces

Karol Pąk (2011)

Formalized Mathematics

We introduce linear transformations of Euclidean topological spaces given by a transformation matrix. Next, we prove selected properties and basic arithmetic operations on these linear transformations. Finally, we show that a linear transformation given by an invertible matrix is a homeomorphism.

Linear transforms supporting circular convolution over a commutative ring with identity

Mohamed Mounir Nessibi (1995)

Commentationes Mathematicae Universitatis Carolinae

We consider a commutative ring R with identity and a positive integer N . We characterize all the 3-tuples ( L 1 , L 2 , L 3 ) of linear transforms over R N , having the “circular convolution” property, i.eṡuch that x * y = L 3 ( L 1 ( x ) L 2 ( y ) ) for all x , y R N .

Linearization of Poisson actions and singular values of matrix products

Anton Alekseev, Eckhard Meinrenken, Chris Woodward (2001)

Annales de l’institut Fourier

We prove that the linearization functor from the category of Hamiltonian K -actions with group-valued moment maps in the sense of Lu, to the category of ordinary Hamiltonian K - actions, preserves products up to symplectic isomorphism. As an application, we give a new proof of the Thompson conjecture on singular values of matrix products and extend this result to the case of real matrices. We give a formula for the Liouville volume of these spaces and obtain from it a hyperbolic version of the Duflo...

Localization and delocalization for heavy tailed band matrices

Florent Benaych-Georges, Sandrine Péché (2014)

Annales de l'I.H.P. Probabilités et statistiques

We consider some random band matrices with band-width N μ whose entries are independent random variables with distribution tail in x - α . We consider the largest eigenvalues and the associated eigenvectors and prove the following phase transition. On the one hand, when α l t ; 2 ( 1 + μ - 1 ) , the largest eigenvalues have order N ( 1 + μ ) / α , are asymptotically distributed as a Poisson process and their associated eigenvectors are essentially carried by two coordinates (this phenomenon has already been remarked for full matrices by Soshnikov...

Localization of dominant eigenpairs and planted communities by means of Frobenius inner products

Dario Fasino, Francesco Tudisco (2016)

Czechoslovak Mathematical Journal

We propose a new localization result for the leading eigenvalue and eigenvector of a symmetric matrix A . The result exploits the Frobenius inner product between A and a given rank-one landmark matrix X . Different choices for X may be used, depending on the problem under investigation. In particular, we show that the choice where X is the all-ones matrix allows to estimate the signature of the leading eigenvector of A , generalizing previous results on Perron-Frobenius properties of matrices with...

Currently displaying 1101 – 1120 of 2599