Displaying 381 – 400 of 785

Showing per page

Monodromy of a family of hypersurfaces

Vincenzo Di Gennaro, Davide Franco (2009)

Annales scientifiques de l'École Normale Supérieure

Let Y be an ( m + 1 ) -dimensional irreducible smooth complex projective variety embedded in a projective space. Let Z be a closed subscheme of Y , and δ be a positive integer such that Z , Y ( δ ) is generated by global sections. Fix an integer d δ + 1 , and assume the general divisor X | H 0 ( Y , Z , Y ( d ) ) | is smooth. Denote by H m ( X ; ) Z van the quotient of H m ( X ; ) by the cohomology of Y and also by the cycle classes of the irreducible components of dimension m of Z . In the present paper we prove that the monodromy representation on H m ( X ; ) Z van for the family of smooth...

Motivic-type invariants of blow-analytic equivalence

Satoshi Koike, Adam Parusiński (2003)

Annales de l'Institut Fourier

To a given analytic function germ f : ( d , 0 ) ( , 0 ) , we associate zeta functions Z f , + , Z f , - [ [ T ] ] , defined analogously to the motivic zeta functions of Denef and Loeser. We show that our zeta functions are rational and that they are invariants of the blow-analytic equivalence in the sense of Kuo. Then we use them together with the Fukui invariant to classify the blow-analytic equivalence classes of Brieskorn polynomials of two variables. Except special series of singularities our method classifies as well the blow-analytic...

Multiplicity and the Łojasiewicz exponent

S. Spodzieja (2000)

Annales Polonici Mathematici

We give a formula for the multiplicity of a holomorphic mapping f : n Ω m , m > n, at an isolated zero, in terms of the degree of an analytic set at a point and the degree of a branched covering. We show that calculations of this multiplicity can be reduced to the case when m = n. We obtain an analogous result for the local Łojasiewicz exponent.

Multiplicity of polynomials on trajectories of polynomial vector fields in C 3

Andrei Gabrielov, Frédéric Jean, Jean-Jacques Risler (1998)

Banach Center Publications

Let ξ be a polynomial vector field on n with coefficients of degree d and P be a polynomial of degree p. We are interested in bounding the multiplicity of a zero of a restriction of P to a non-singular trajectory of ξ, when P does not vanish identically on this trajectory. Bounds doubly exponential in terms of n are already known ([9,5,10]). In this paper, we prove that, when n=3, there is a bound of the form p + 2 p ( p + d - 1 ) 2 . In Control Theory, such a bound can be used to give an estimate of the degree of nonholonomy...

Nodal deformations of singularities.

Jorge A. González-Ramírez (2002)

Revista Matemática Complutense

In this note we study deformations of a plane curve singularity (C,P) toδ(C,P) nodes. We see that for some types of singularities the method of A'Campo can be carried on using parametric equations. For such singularities we prove that deformations to δ nodes can be made within the space of curves of the same degree.

Non oscillating solutions of analytic gradient vector fields

Fernando Sanz (1998)

Annales de l'institut Fourier

Let γ be an integral solution of an analytic real vector field ξ defined in a neighbordhood of 0 3 . Suppose that γ has a single limit point, ω ( γ ) = { 0 } . We say that γ is non oscillating if, for any analytic surface H , either γ is contained in H or γ cuts H only finitely many times. In this paper we give a sufficient condition for γ to be non oscillating. It is established in terms of the existence of “generalized iterated tangents”, i.e. the existence of a single limit point for any transform property for...

Non-Archimedean integrals and stringy Euler numbers of log-terminal pairs

Victor V. Batyrev (1999)

Journal of the European Mathematical Society

Using non-Archimedian integration over spaces of arcs of algebraic varieties, we define stringy Euler numbers associated with arbitrary Kawamata log-terminal pairs. There is a natural Kawamata log-terminal pair corresponding to an algebraic variety V having a regular action of a finite group G . In this situation we show that the stringy Euler number of this pair coincides with the physicists’ orbifold Euler number defined by the Dixon-Harvey-Vafa-Witten formula. As an application, we prove a conjecture...

Non-embeddable 1 -convex manifolds

Jan Stevens (2014)

Annales de l’institut Fourier

We show that every small resolution of a 3-dimensional terminal hypersurface singularity can occur on a non-embeddable 1 -convex manifold.We give an explicit example of a non-embeddable manifold containing an irreducible exceptional rational curve with normal bundle of type ( 1 , - 3 ) . To this end we study small resolutions of c D 4 -singularities.

Nonresonance conditions for arrangements

Daniel C. Cohen, Alexandru Dimca, Peter Orlik (2003)

Annales de l’institut Fourier

We prove a vanishing theorem for the cohomology of the complement of a complex hyperplane arrangement with coefficients in a complex local system. This result is compared with other vanishing theorems, and used to study Milnor fibers of line arrangements, and hypersurface arrangements.

Currently displaying 381 – 400 of 785