Radial Functions and Regularity of Solutions to the Schrödinger Equation.
We give a survey of results on the Lieb-Thirring inequalities for the eigenvalue moments of Schrödinger operators. In particular, we discuss the optimal values of the constants therein for higher dimensions. We elaborate on certain generalisations and some open problems as well.
Let be a complete noncompact manifold of dimension at least 3 and an asymptotically conic metric on , in the sense that compactifies to a manifold with boundary so that becomes a scattering metric on . We study the resolvent kernel and Riesz transform of the operator , where is the positive Laplacian associated to and is a real potential function smooth on and vanishing at the boundary.In our first paper we assumed that has neither zero modes nor a zero-resonance and showed...
We consider the 3D Schrödinger operator where , is a magnetic potential generating a constant magneticfield of strength , and is a short-range electric potential which decays superexponentially with respect to the variable along the magnetic field. We show that the resolvent of admits a meromorphic extension from the upper half plane to an appropriate Riemann surface , and define the resonances of as the poles of this meromorphic extension. We study their distribution near any fixed...