Prolongement méromorphe de la matrice de diffusion pour les problèmes à corps à longue portée
In this paper, we study the linear Schrödinger equation over the d-dimensional torus, with small values of the perturbing potential. We consider numerical approximations of the associated solutions obtained by a symplectic splitting method (to discretize the time variable) in combination with the Fast Fourier Transform algorithm (to discretize the space variable). In this fully discrete setting, we prove that the regularity of the initial datum is preserved over long times, i.e. times that are...
In these lecture notes we describe the propagation of singularities of tempered distributional solutions of , where is a many-body hamiltonian , , , and is not a threshold of , under the assumption that the inter-particle (e.g. two-body) interactions are real-valued polyhomogeneous symbols of order (e.g. Coulomb-type with the singularity at the origin removed). Here the term “singularity” provides a microlocal description of the lack of decay at infinity. Our result is then that the...