Displaying 121 – 140 of 591

Showing per page

Essential self-adjointness for combinatorial Schrödinger operators III- Magnetic fields

Yves Colin de Verdière, Nabila Torki-Hamza, Françoise Truc (2011)

Annales de la faculté des sciences de Toulouse Mathématiques

We define the magnetic Schrödinger operator on an infinite graph by the data of a magnetic field, some weights on vertices and some weights on edges. We discuss essential self-adjointness of this operator for graphs of bounded degree. The main result is a discrete version of a result of two authors of the present paper.

Essential self-adjointness for magnetic Schrödinger operators on non-compact manifolds

Mikhail Shubin (1998/1999)

Séminaire Équations aux dérivées partielles

We give a condition of essential self-adjointness for magnetic Schrödinger operators on non-compact Riemannian manifolds with a given positive smooth measure which is fixed independently of the metric. This condition is related to the classical completeness of a related classical hamiltonian without magnetic field. The main result generalizes the result by I. Oleinik [29,30,31], a shorter and more transparent proof of which was provided by the author in [41]. The main idea, as in [41], consists...

Currently displaying 121 – 140 of 591