Displaying 221 – 240 of 601

Showing per page

Homogenization of quadratic complementary energies: a duality example

Hélia Serrano (2011)

Mathematica Bohemica

We study an example in two dimensions of a sequence of quadratic functionals whose limit energy density, in the sense of Γ -convergence, may be characterized as the dual function of the limit energy density of the sequence of their dual functionals. In this special case, Γ -convergence is indeed stable under the dual operator. If we perturb such quadratic functionals with linear terms this statement is no longer true.

Homogenization of some nonlinear problems with specific dependence upon coordinates

P. Courilleau, S. Fabre, J. Mossino (2001)

Bollettino dell'Unione Matematica Italiana

Questo articolo considera una successione di equazioni differenziali a derivate parziali non lineari in forma di divergenza del tipo - div Q ϵ G x , N ϵ u = f ϵ , in un dominio limitato Ω dello spazio n -dimensionale; Q ϵ = Q ϵ x e N ϵ = N ϵ x sono matrici con coefficenti limitati, N ϵ e è invertibile e la sua matrice inversa R ϵ ha anche coefficenti limitati. La non linearità è dovuta alla funzione G = G x , ξ ; la condizione di crescita, la monotonicità e le ipotesi di coercitività sono modellate sul p -Laplaciano, 1 < p < , ed assicurano l'esistenza di una soluzione...

Improved estimates for the Ginzburg-Landau equation : the elliptic case

Fabrice Bethuel, Giandomenico Orlandi, Didier Smets (2005)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We derive estimates for various quantities which are of interest in the analysis of the Ginzburg-Landau equation, and which we bound in terms of the G L -energy E ε and the parameter ε . These estimates are local in nature, and in particular independent of any boundary condition. Most of them improve and extend earlier results on the subject.

Indefinite Quasilinear Neumann Problem on Unbounded Domains

J. Chabrowski (2006)

Bulletin of the Polish Academy of Sciences. Mathematics

We investigate the solvability of the quasilinear Neumann problem (1.1) with sub- and supercritical exponents in an unbounded domain Ω. Under some integrability conditions on the coefficients we establish embedding theorems of weighted Sobolev spaces into weighted Lebesgue spaces. This is used to obtain solutions through a global minimization of a variational functional.

Inequalities of Korn's type, uniform with respect to a class of domains

Ivan Hlaváček (1989)

Aplikace matematiky

Inequalities of Korn's type involve a positive constant, which depends on the domain, in general. A question arises, whether the constants possess a positive infimum, if a class of bounded two-dimensional domains with Lipschitz boundary is considered. The proof of a positive answer to this question is shown for several types of boundary conditions and for two classes of domains.

Infinitely many weak solutions for a non-homogeneous Neumann problem in Orlicz--Sobolev spaces

Ghasem A. Afrouzi, Shaeid Shokooh, Nguyen T. Chung (2019)

Commentationes Mathematicae Universitatis Carolinae

Under a suitable oscillatory behavior either at infinity or at zero of the nonlinear term, the existence of infinitely many weak solutions for a non-homogeneous Neumann problem, in an appropriate Orlicz--Sobolev setting, is proved. The technical approach is based on variational methods.

Isoperimetric estimates for the first eigenvalue of the p -Laplace operator and the Cheeger constant

Bernhard Kawohl, V. Fridman (2003)

Commentationes Mathematicae Universitatis Carolinae

First we recall a Faber-Krahn type inequality and an estimate for λ p ( Ω ) in terms of the so-called Cheeger constant. Then we prove that the eigenvalue λ p ( Ω ) converges to the Cheeger constant h ( Ω ) as p 1 . The associated eigenfunction u p converges to the characteristic function of the Cheeger set, i.e. a subset of Ω which minimizes the ratio | D | / | D | among all simply connected D Ω . As a byproduct we prove that for convex Ω the Cheeger set ω is also convex.

Currently displaying 221 – 240 of 601