Monotonicity properties for ground states of the scalar field equation
In this Note we consider the following problem where is a bounded smooth starshaped domain in , , , , and . We prove that if is a solution of Morse index than cannot have more than maximum points in for sufficiently small. Moreover if is convex we prove that any solution of index one has only one critical point and the level sets are starshaped for sufficiently small.
We prove several optimal Moser–Trudinger and logarithmic Hardy–Littlewood–Sobolev inequalities for systems in two dimensions. These include inequalities on the sphere , on a bounded domain and on all of . In some cases we also address the question of existence of minimizers.
In this paper, we are concerned with the existence of multi-bump solutions for a nonlinear Schrödinger equations with electromagnetic fields. We prove under some suitable conditions that for any positive integer m, there exists ε(m) > 0 such that, for 0 < ε < ε(m), the problem has an m-bump complex-valued solution. As a result, when ε → 0, the equation has more and more multi-bump complex-valued solutions.
In this work we consider the magnetic NLS equationwhere , is a magnetic potential, possibly unbounded, is a multi-well electric potential, which can vanish somewhere, is a subcritical nonlinear term. We prove the existence of a semiclassical multi-peak solution to (0.1), under conditions on the nonlinearity which are nearly optimal.
In this work we consider the magnetic NLS equation where , is a magnetic potential, possibly unbounded, is a multi-well electric potential, which can vanish somewhere, f is a subcritical nonlinear term. We prove the existence of a semiclassical multi-peak solution to (0.1), under conditions on the nonlinearity which are nearly optimal.