Displaying 1301 – 1320 of 1373

Showing per page

Weak solutions for elliptic systems with variable growth in Clifford analysis

Yongqiang Fu, Binlin Zhang (2013)

Czechoslovak Mathematical Journal

In this paper we consider the following Dirichlet problem for elliptic systems: D A ( x , u ( x ) , D u ( x ) ) ¯ = B ( x , u ( x ) , D u ( x ) ) , x Ω , u ( x ) = 0 , x Ω , where D is a Dirac operator in Euclidean space, u ( x ) is defined in a bounded Lipschitz domain Ω in n and takes value in Clifford algebras. We first introduce variable exponent Sobolev spaces of Clifford-valued functions, then discuss the properties of these spaces and the related operator theory in these spaces. Using the Galerkin method, we obtain the existence of weak solutions to the scalar part of the above-mentioned...

Weak uniqueness and partial regularity for the composite membrane problem

Sagun Chanillo, Carlos E. Kenig (2008)

Journal of the European Mathematical Society

We study the composite membrane problem in all dimensions. We prove that the minimizing solutions exhibit a weak uniqueness property which under certain conditions can be turned into a full uniqueness result. Next we study the partial regularity of the solutions to the Euler–Lagrange equation associated to the composite problem and also the regularity of the free boundary for solutions to the Euler–Lagrange equations.

Γ -convergence of concentration problems

Micol Amar, Adriana Garroni (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

In this paper, we use Γ -convergence techniques to study the following variational problem S ε F ( Ω ) : = sup ε - 2 * Ω F ( u ) d x : Ω | u | 2 d x ε 2 , u = 0 on Ω , where 0 F ( t ) | t | 2 * , with 2 * = 2 n n - 2 , and Ω is a bounded domain of n , n 3 . We obtain a Γ -convergence result, on which one can easily read the usual concentration phenomena arising in critical growth problems. We extend the result to a non-homogeneous version of problem S ε F ( Ω ) . Finally, a second order expansion in Γ -convergence permits to identify the concentration points of the maximizing sequences, also in some non-homogeneous case.

Σ -convergence of nonlinear monotone operators in perforated domains with holes of small size

Jean Louis Woukeng (2009)

Applications of Mathematics

This paper is devoted to the homogenization beyond the periodic setting, of nonlinear monotone operators in a domain in N with isolated holes of size ε 2 ( ε > 0 a small parameter). The order of the size of the holes is twice that of the oscillations of the coefficients of the operator, so that the problem under consideration is a reiterated homogenization problem in perforated domains. The usual periodic perforation of the domain and the classical periodicity hypothesis on the coefficients of the operator...

Currently displaying 1301 – 1320 of 1373