Displaying 201 – 220 of 453

Showing per page

Neumann problems associated to nonhomogeneous differential operators in Orlicz–Sobolev spaces

Mihai Mihăilescu, Vicenţiu Rădulescu (2008)

Annales de l’institut Fourier

We study a nonlinear Neumann boundary value problem associated to a nonhomogeneous differential operator. Taking into account the competition between the nonlinearity and the bifurcation parameter, we establish sufficient conditions for the existence of nontrivial solutions in a related Orlicz–Sobolev space.

Nonlinear homogeneous eigenvalue problem in R N : nonstandard variational approach

Pavel Drábek, Zakaria Moudan, Abdelfettah Touzani (1997)

Commentationes Mathematicae Universitatis Carolinae

The nonlinear eigenvalue problem for p-Laplacian - div ( a ( x ) | u | p - 2 u ) = λ g ( x ) | u | p - 2 u in N , u > 0 in N , lim | x | u ( x ) = 0 , is considered. We assume that 1 < p < N and that g is indefinite weight function. The existence and C 1 , α -regularity of the weak solution is proved.

Nontrivial solutions to boundary value problems for semilinear Δ γ -differential equations

Duong Trong Luyen (2021)

Applications of Mathematics

In this article, we study the existence of nontrivial weak solutions for the following boundary value problem: - Δ γ u = f ( x , u ) in Ω , u = 0 on Ω , where Ω is a bounded domain with smooth boundary in N , Ω { x j = 0 } for some j , Δ γ is a subelliptic linear operator of the type Δ γ : = j = 1 N x j ( γ j 2 x j ) , x j : = x j , N 2 , where γ ( x ) = ( γ 1 ( x ) , γ 2 ( x ) , , γ N ( x ) ) satisfies certain homogeneity conditions and degenerates at the coordinate hyperplanes and the nonlinearity f ( x , ξ ) is of subcritical growth and does not satisfy the Ambrosetti-Rabinowitz (AR) condition.

Norm inequalities for potential-type operators.

Sagun Chanillo, Jan-Olov Strömberg, Richard L. Wheeden (1987)

Revista Matemática Iberoamericana

The purpose of this paper is to derive norm inequalities for potentials of the formTf(x) = ∫(Rn) f(y)K(x,y)dy,     x ∈ Rn,when K is a Kernel which satisfies estimates like those that hold for the Green function associated with the degenerate elliptic equations studied in [3] and [4].

Null controllability of a coupled model in population dynamics

Younes Echarroudi (2023)

Mathematica Bohemica

We are concerned with the null controllability of a linear coupled population dynamics system or the so-called prey-predator model with Holling type I functional response of predator wherein both equations are structured in age and space. It is worth mentioning that in our case, the space variable is viewed as the “gene type” of population. The studied system is with two different dispersion coefficients which depend on the gene type variable and degenerate in the boundary. This system will be governed...

On a class of nonlinear problems involving a p ( x ) -Laplace type operator

Mihai Mihăilescu (2008)

Czechoslovak Mathematical Journal

We study the boundary value problem - d i v ( ( | u | p 1 ( x ) - 2 + | u | p 2 ( x ) - 2 ) u ) = f ( x , u ) in Ω , u = 0 on Ω , where Ω is a smooth bounded domain in N . Our attention is focused on two cases when f ( x , u ) = ± ( - λ | u | m ( x ) - 2 u + | u | q ( x ) - 2 u ) , where m ( x ) = max { p 1 ( x ) , p 2 ( x ) } for any x Ω ¯ or m ( x ) < q ( x ) < N · m ( x ) ( N - m ( x ) ) for any x Ω ¯ . In the former case we show the existence of infinitely many weak solutions for any λ > 0 . In the latter we prove that if λ is large enough then there exists a nontrivial weak solution. Our approach relies on the variable exponent theory of generalized Lebesgue-Sobolev spaces, combined with a 2 -symmetric version for even functionals...

Currently displaying 201 – 220 of 453