Displaying 221 – 240 of 453

Showing per page

On a nonlocal elliptic problem

Andrzej Raczyński (1999)

Applicationes Mathematicae

We study stationary solutions of the system u t = ( ( m - 1 ) / m u m + u φ ) , m => 1, Δφ = ±u, defined in a bounded domain Ω of n . The physical interpretation of the above system comes from the porous medium theory and semiconductor physics.

On Lipschitz truncations of Sobolev functions (with variable exponent) and their selected applications

Lars Diening, Josef Málek, Mark Steinhauer (2008)

ESAIM: Control, Optimisation and Calculus of Variations

We study properties of Lipschitz truncations of Sobolev functions with constant and variable exponent. As non-trivial applications we use the Lipschitz truncations to provide a simplified proof of an existence result for incompressible power-law like fluids presented in [Frehse et al., SIAM J. Math. Anal34 (2003) 1064–1083]. We also establish new existence results to a class of incompressible electro-rheological fluids.

On positive solutions of quasilinear elliptic systems

Yuanji Cheng (1997)

Czechoslovak Mathematical Journal

In this paper, we consider the existence and nonexistence of positive solutions of degenerate elliptic systems - Δ p u = f ( x , u , v ) , in Ω , - Δ p v = g ( x , u , v ) , in Ω , u = v = 0 , on Ω , where - Δ p is the p -Laplace operator, p > 1 and Ω is a C 1 , α -domain in n . We prove an analogue of [7, 16] for the eigenvalue problem with f ( x , u , v ) = λ 1 v p - 1 , g ( x , u , v ) = λ 2 u p - 1 and obtain a non-existence result of positive solutions for the general systems.

On Some Nonlinear Partial Differential Equations Involving the “1”-Laplacian and Critical Sobolev Exponent

Françoise Demengel (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Let Ω be a smooth bounded domain in 𝐑 n , n > 1, let a and f be continuous functions on Ω ¯ , 1 = n n - 1 . We are concerned here with the existence of solution in B V ( Ω ) , positive or not, to the problem:
 - div σ + a ( x ) s i g n u a m p ; = f | u | 1 - 2 u σ . u a m p ; = | u | in Ω u is not identically zero , a m p ; - σ . n ( u ) = | u | on Ω . This problem is closely related to the extremal functions for the problem of the best constant of W 1 , 1 ( Ω ) into L N N - 1 ( Ω ) .

On the continuity of degenerate n-harmonic functions

Flavia Giannetti, Antonia Passarelli di Napoli (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We study the regularity of finite energy solutions to degenerate n-harmonic equations. The function K(x), which measures the degeneracy, is assumed to be subexponentially integrable, i.e. it verifies the condition exp(P(K)) ∈ Lloc1. The function P(t) is increasing on  [0,∞[  and satisfies the divergence condition 1 P ( t ) t 2 d t = . ∫ 1 ∞ P ( t ) t 2   d t = ∞ .

On the continuity of degenerate n-harmonic functions

Flavia Giannetti, Antonia Passarelli di Napoli (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We study the regularity of finite energy solutions to degenerate n-harmonic equations. The function K(x), which measures the degeneracy, is assumed to be subexponentially integrable, i.e. it verifies the condition exp(P(K)) ∈ Lloc1. The function P(t) is increasing on  [0,∞[  and satisfies the divergence condition 1 P ( t ) t 2 d t = .

On the dimension of p -harmonic measure in space

John L. Lewis, Kaj Nyström, Andrew Vogel (2013)

Journal of the European Mathematical Society

Let Ω n , n 3 , and let p , 1 < p < , p 2 , be given. In this paper we study the dimension of p -harmonic measures that arise from non-negative solutions to the p -Laplace equation, vanishing on a portion of Ω , in the setting of δ -Reifenberg flat domains. We prove, for p n , that there exists δ ˜ = δ ˜ ( p , n ) > 0 small such that if Ω is a δ -Reifenberg flat domain with δ < δ ˜ , then p -harmonic measure is concentrated on a set of σ -finite H n 1 -measure. We prove, for p n , that for sufficiently flat Wolff snowflakes the Hausdorff dimension of p -harmonic measure...

Currently displaying 221 – 240 of 453