Displaying 361 – 380 of 901

Showing per page

Global solutions via partial information and the Cahn-Hilliard equation

Jan Cholewa, Tomasz Dłotko (1996)

Banach Center Publications

Global solutions of semilinear parabolic equations are studied in the case when some weak a priori estimate for solutions of the problem under consideration is already known. The focus is on the rapid growth of the nonlinear term for which existence of the semigroup and certain dynamic properties of the considered system can be justified. Examples including the famous Cahn-Hilliard equation are finally discussed.

Global solvability in the parabolic-elliptic chemotaxis system with singular sensitivity and logistic source

Xiangdong Zhao (2024)

Czechoslovak Mathematical Journal

We study the chemotaxis system with singular sensitivity and logistic-type source: u t = Δ u - χ · ( u v / v ) + r u - μ u k , 0 = Δ v - v + u under the non-flux boundary conditions in a smooth bounded domain Ω n , χ , r , μ > 0 , k > 1 and n 1 . It is shown with k ( 1 , 2 ) that the system possesses a global generalized solution for n 2 which is bounded when χ > 0 is suitably small related to r > 0 and the initial datum is properly small, and a global bounded classical solution for n = 1 .

Global φ-attractor for a modified 3D Bénard system on channel-like domains

O.V. Kapustyan, A.V. Pankov (2014)

Nonautonomous Dynamical Systems

In this paper we prove the existence of a global φ-attractor in the weak topology of the natural phase space for the family of multi-valued processes generated by solutions of a nonautonomous modified 3D Bénard system in unbounded domains for which Poincaré inequality takes place.

Heat flows for extremal Kähler metrics

Santiago R. Simanca (2005)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Let ( M , J , Ω ) be a closed polarized complex manifold of Kähler type. Let G be the maximal compact subgroup of the automorphism group of ( M , J ) . On the space of Kähler metrics that are invariant under G and represent the cohomology class Ω , we define a flow equation whose critical points are the extremal metrics,i.e.those that minimize the square of the L 2 -norm of the scalar curvature. We prove that the dynamical system in this space of metrics defined by the said flow does not have periodic orbits, and that its...

Highly anisotropic nonlinear temperature balance equation and its numerical solution using asymptotic-preserving schemes of second order in time

Alexei Lozinski, Jacek Narski, Claudia Negulescu (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper deals with the numerical study of a nonlinear, strongly anisotropic heat equation. The use of standard schemes in this situation leads to poor results, due to the high anisotropy. An Asymptotic-Preserving method is introduced in this paper, which is second-order accurate in both, temporal and spacial variables. The discretization in time is done using an L-stable Runge−Kutta scheme. The convergence of the method is shown to be independent of the anisotropy parameter , and this for fixed...

Homogenization of a three-phase composites of double-porosity type

Ahmed Boughammoura, Yousra Braham (2021)

Czechoslovak Mathematical Journal

In this work we consider a diffusion problem in a periodic composite having three phases: matrix, fibers and interphase. The heat conductivities of the medium vary periodically with a period of size ε β ( ε > 0 and β > 0 ) in the transverse directions of the fibers. In addition, we assume that the conductivity of the interphase material and the anisotropy contrast of the material in the fibers are of the same order ε 2 (the so-called double-porosity type scaling) while the matrix material has a conductivity of...

Homogenization of quasilinear parabolic problems by the method of Rothe and two scale convergence

Emmanuel Kwame Essel, Komil Kuliev, Gulchehra Kulieva, Lars-Erik Persson (2010)

Applications of Mathematics

We consider a quasilinear parabolic problem with time dependent coefficients oscillating rapidly in the space variable. The existence and uniqueness results are proved by using Rothe’s method combined with the technique of two-scale convergence. Moreover, we derive a concrete homogenization algorithm for giving a unique and computable approximation of the solution.

How to unify the total/local-length-constraints of the gradient flow for the bending energy of plane curves

Yuki Miyamoto, Takeyuki Nagasawa, Fumito Suto (2009)

Kybernetika

The gradient flow of bending energy for plane curve is studied. The flow is considered under two kinds of constraints; one is under the area and total-length constraints; the other is under the area and local-length constraints. The fundamental results (the local existence and uniqueness) were obtained independently by Kurihara and the second author for the former one; by Okabe for the later one. For the former one the global existence was shown for any smooth initial curves, but the asymptotic...

Currently displaying 361 – 380 of 901