Displaying 361 – 380 of 898

Showing per page

Global φ-attractor for a modified 3D Bénard system on channel-like domains

O.V. Kapustyan, A.V. Pankov (2014)

Nonautonomous Dynamical Systems

In this paper we prove the existence of a global φ-attractor in the weak topology of the natural phase space for the family of multi-valued processes generated by solutions of a nonautonomous modified 3D Bénard system in unbounded domains for which Poincaré inequality takes place.

Heat flows for extremal Kähler metrics

Santiago R. Simanca (2005)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Let ( M , J , Ω ) be a closed polarized complex manifold of Kähler type. Let G be the maximal compact subgroup of the automorphism group of ( M , J ) . On the space of Kähler metrics that are invariant under G and represent the cohomology class Ω , we define a flow equation whose critical points are the extremal metrics,i.e.those that minimize the square of the L 2 -norm of the scalar curvature. We prove that the dynamical system in this space of metrics defined by the said flow does not have periodic orbits, and that its...

Highly anisotropic nonlinear temperature balance equation and its numerical solution using asymptotic-preserving schemes of second order in time

Alexei Lozinski, Jacek Narski, Claudia Negulescu (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper deals with the numerical study of a nonlinear, strongly anisotropic heat equation. The use of standard schemes in this situation leads to poor results, due to the high anisotropy. An Asymptotic-Preserving method is introduced in this paper, which is second-order accurate in both, temporal and spacial variables. The discretization in time is done using an L-stable Runge−Kutta scheme. The convergence of the method is shown to be independent of the anisotropy parameter , and this for fixed...

Homogenization of a three-phase composites of double-porosity type

Ahmed Boughammoura, Yousra Braham (2021)

Czechoslovak Mathematical Journal

In this work we consider a diffusion problem in a periodic composite having three phases: matrix, fibers and interphase. The heat conductivities of the medium vary periodically with a period of size ε β ( ε > 0 and β > 0 ) in the transverse directions of the fibers. In addition, we assume that the conductivity of the interphase material and the anisotropy contrast of the material in the fibers are of the same order ε 2 (the so-called double-porosity type scaling) while the matrix material has a conductivity of...

Homogenization of quasilinear parabolic problems by the method of Rothe and two scale convergence

Emmanuel Kwame Essel, Komil Kuliev, Gulchehra Kulieva, Lars-Erik Persson (2010)

Applications of Mathematics

We consider a quasilinear parabolic problem with time dependent coefficients oscillating rapidly in the space variable. The existence and uniqueness results are proved by using Rothe’s method combined with the technique of two-scale convergence. Moreover, we derive a concrete homogenization algorithm for giving a unique and computable approximation of the solution.

How to unify the total/local-length-constraints of the gradient flow for the bending energy of plane curves

Yuki Miyamoto, Takeyuki Nagasawa, Fumito Suto (2009)

Kybernetika

The gradient flow of bending energy for plane curve is studied. The flow is considered under two kinds of constraints; one is under the area and total-length constraints; the other is under the area and local-length constraints. The fundamental results (the local existence and uniqueness) were obtained independently by Kurihara and the second author for the former one; by Okabe for the later one. For the former one the global existence was shown for any smooth initial curves, but the asymptotic...

Hybrid parallelization of an adaptive finite element code

Axel Voigt, Thomas Witkowski (2010)

Kybernetika

We present a hybrid OpenMP/MPI parallelization of the finite element method that is suitable to make use of modern high performance computers. These are usually built from a large bulk of multi-core systems connected by a fast network. Our parallelization method is based firstly on domain decomposition to divide the large problem into small chunks. Each of them is then solved on a multi-core system using parallel assembling, solution and error estimation. To make domain decomposition for both, the...

Hydrodynamic limit of a d-dimensional exclusion process with conductances

Fábio Júlio Valentim (2012)

Annales de l'I.H.P. Probabilités et statistiques

Fix a polynomial Φ of the form Φ(α) = α + ∑2≤j≤m  aj  αk=1j with Φ'(1) gt; 0. We prove that the evolution, on the diffusive scale, of the empirical density of exclusion processes on 𝕋 d , with conductances given by special class of functionsW, is described by the unique weak solution of the non-linear parabolic partial differential equation ∂tρ = ∑d  ∂xk  ∂Wk  Φ(ρ). We also derive some properties of the operator ∑k=1d  ...

Hydrodynamical behavior of symmetric exclusion with slow bonds

Tertuliano Franco, Patrícia Gonçalves, Adriana Neumann (2013)

Annales de l'I.H.P. Probabilités et statistiques

We consider the exclusion process in the one-dimensional discrete torus with N points, where all the bonds have conductance one, except a finite number of slow bonds, with conductance N - β , with β [ 0 , ) . We prove that the time evolution of the empirical density of particles, in the diffusive scaling, has a distinct behavior according to the range of the parameter β . If β [ 0 , 1 ) , the hydrodynamic limit is given by the usual heat equation. If β = 1 , it is given by a parabolic equation involving an operator d d x d d W , where W ...

Currently displaying 361 – 380 of 898