Optimal control of semilinear parabolic equations with state-constraints of bottleneck type
We consider optimal distributed and boundary control problems for semilinear parabolic equations, where pointwise constraints on the control and pointwise mixed control-state constraints of bottleneck type are given. Our main result states the existence of regular Lagrange multipliers for the state-constraints. Under natural assumptions, we are able to show the existence of bounded and measurable Lagrange multipliers. The method is based on results from the theory of continuous linear programming...
Slightly below the transition temperatures, the behavior of superconducting materials is governed by the Ginzburg-Landau (GL) equation which characterizes the dynamical interaction of the density of superconducting electron pairs and the exited electromagnetic potential. In this paper, an optimal control problem of the strength of external magnetic field for one-dimensional thin film superconductors with respect to a convex criterion functional is considered. It is formulated as a nonlinear coefficient...
Sfruttando i risultati di [1], si prova che le derivate spaziali di ordine con delle soluzioni in di un sistema parabolico quasilineare di ordine con andamenti strettamente controllati, sono parzialmente hölderiane in con esponente di hölderianità decrescente al crescere di .
Let Ω ⊂ RN be a smooth bounded domain. We give sufficient conditions (which are also necessary in many cases) on two nonnegative functions a, b that are possibly discontinuous and unbounded for the existence of nonnegative solutions for semilinear Dirichlet periodic parabolic problems of the form Lu = λa (x, t) up - b (x, t) uq in Ω × R, where 0 < p, q < 1 and λ > 0. In some cases we also show the existence of solutions uλ in the interior of the positive cone and that uλ can...
In this paper we study nonlinear parabolic equations using the method of upper and lower solutions. Using truncation and penalization techniques and results from the theory of operators of monotone type, we prove the existence of a periodic solution between an upper and a lower solution. Then with some monotonicity conditions we prove the existence of extremal solutions in the order interval defined by an upper and a lower solution. Finally we consider problems with discontinuities and we show that...