Stability of global solutions to one-phase Stefan problem for a semilinear parabolic equation
In this paper we study a one dimensional model of ferromagnetic nano-wires of finite length. First we justify the model by Γ-convergence arguments. Furthermore we prove the existence of wall profiles. These walls being unstable, we stabilize them by the mean of an applied magnetic field.
In this paper we study a one dimensional model of ferromagnetic nano-wires of finite length. First we justify the model by Γ-convergence arguments. Furthermore we prove the existence of wall profiles. These walls being unstable, we stabilize them by the mean of an applied magnetic field.
In this paper we study a one dimensional model of ferromagnetic nano-wires of finite length. First we justify the model by Γ-convergence arguments. Furthermore we prove the existence of wall profiles. These walls being unstable, we stabilize them by the mean of an applied magnetic field.
In this paper we explicit the derivative of the flows of one-dimensional reflected diffusion processes. We then get stochastic representations for derivatives of viscosity solutions of one-dimensional semilinear parabolic partial differential equations and parabolic variational inequalities with Neumann boundary conditions.
In this paper, we propose a new diffuse interface model for the study of three immiscible component incompressible viscous flows. The model is based on the Cahn-Hilliard free energy approach. The originality of our study lies in particular in the choice of the bulk free energy. We show that one must take care of this choice in order for the model to give physically relevant results. More precisely, we give conditions for the model to be well-posed and to satisfy algebraically and dynamically consistency...
We survey recent results on the mathematical modeling of nonconvex and nonsmooth contact problems arising in mechanics and engineering. The approach to such problems is based on the notions of an operator subdifferential inclusion and a hemivariational inequality, and focuses on three aspects. First we report on results on the existence and uniqueness of solutions to subdifferential inclusions. Then we discuss two classes of quasi-static hemivariational ineqaulities, and finally, we present ideas...
We study the so-called -superparabolic functions, which are defined as lower semicontinuous supersolutions of a quasilinear parabolic equation. In the linear case, when , we have supercaloric functions and the heat equation. We show that the -superparabolic functions have a spatial Sobolev gradient and a sharp summability exponent is given.
We use logarithmic Sobolev inequalities involving the p-energy functional recently derived in [15], [21] to prove Lp-Lq smoothing and decay properties, of supercontractive and ultracontractive type, for the semigroups associated to doubly nonlinear evolution equations of the form u· = Δp(um) (with m(p - 1) ≥ 1) in an arbitrary euclidean domain, homogeneous Dirichlet boundary conditions being assumed. The bound are of the form ||u(t)||q ≤ C||u0||rγ / tβ for any r ≤ q ∈ [1,+∞) and t > 0 and...