Displaying 221 – 240 of 3301

Showing per page

A spatially inhomogeneous diffusion problem with strong absorption

Riccardo Ricci, Domingo A. Tarzia (2003)

Bollettino dell'Unione Matematica Italiana

We study the asymptotic behaviour ( t + ) of the solutions of a nonlinear diffusion problem with strong absorption. We prove convergence to the stationary solution in the L by means of an appropriate family of sub and supersolutions. In appendix we prove the well posedness of the problem.

A stochastic model of symbiosis

Urszula Skwara (2010)

Annales Polonici Mathematici

We consider a system of stochastic differential equations which models the dynamics of two populations living in symbiosis. We prove the existence, uniqueness and positivity of solutions. We analyse the long-time behaviour of both trajectories and distributions of solutions. We give a biological interpretation of the model.

A strong maximum principle for the Paneitz operator and a non-local flow for the Q -curvature

Matthew J. Gursky, Andrea Malchiodi (2015)

Journal of the European Mathematical Society

In this paper we consider Riemannian manifolds ( M n , g ) of dimension n 5 , with semi-positive Q -curvature and non-negative scalar curvature. Under these assumptions we prove (i) the Paneitz operator satisfies a strong maximum principle; (ii) the Paneitz operator is a positive operator; and (iii) its Green’s function is strictly positive. We then introduce a non-local flow whose stationary points are metrics of constant positive Q -curvature. Modifying the test function construction of Esposito-Robert, we show...

A study of Galerkin method for the heat convection equations

Polina Vinogradova, Anatoli Zarubin (2012)

Applications of Mathematics

The paper investigates the Galerkin method for an initial boundary value problem for heat convection equations. New error estimates for the approximate solutions and their derivatives in strong norm are obtained.

A survey of results on nonlinear Venttsel problems

Darya E. Apushkinskaya, Alexander I. Nazarov (2000)

Applications of Mathematics

We review the recent results for boundary value problems with boundary conditions given by second-order integral-differential operators. Particular attention has been paid to nonlinear problems (without integral terms in the boundary conditions) for elliptic and parabolic equations. For these problems we formulate some statements concerning a priori estimates and the existence theorems in Sobolev and Hölder spaces.

A thermodynamic approach to nonisothermal phase-field models

Irena Pawłow (2015)

Applicationes Mathematicae

The goal of this paper is to work out a thermodynamical setting for nonisothermal phase-field models with conserved and nonconserved order parameters in thermoelastic materials. Our approach consists in exploiting the second law of thermodynamics in the form of the entropy principle according to I. Müller and I. S. Liu, which leads to the evaluation of the entropy inequality with multipliers. As the main result we obtain a general scheme of phase-field models which involves an...

A Tikhonov-type theorem for abstract parabolic differential inclusions in Banach spaces

Anastasie Gudovich, Mikhail Kamenski, Paolo Nistri (2001)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

We consider a class of singularly perturbed systems of semilinear parabolic differential inclusions in infinite dimensional spaces. For such a class we prove a Tikhonov-type theorem for a suitably defined subset of the set of all solutions for ε ≥ 0, where ε is the perturbation parameter. Specifically, assuming the existence of a Lipschitz selector of the involved multivalued maps we can define a nonempty subset Z L ( ε ) of the solution set of the singularly perturbed system. This subset is the set of...

Currently displaying 221 – 240 of 3301