Displaying 541 – 560 of 3302

Showing per page

Blowup rates for nonlinear heat equations with gradient terms and for parabolic inequalities

Philippe Souplet, Slim Tayachi (2001)

Colloquium Mathematicae

Consider the nonlinear heat equation (E): u t - Δ u = | u | p - 1 u + b | u | q . We prove that for a large class of radial, positive, nonglobal solutions of (E), one has the blowup estimates C ( T - t ) - 1 / ( p - 1 ) | | u ( t ) | | C ( T - t ) - 1 / ( p - 1 ) . Also, as an application of our method, we obtain the same upper estimate if u only satisfies the nonlinear parabolic inequality u t - u x x u p . More general inequalities of the form u t - u x x f ( u ) with, for instance, f ( u ) = ( 1 + u ) l o g p ( 1 + u ) are also treated. Our results show that for solutions of the parabolic inequality, one has essentially the same estimates as for solutions of the ordinary...

Blow-up results for some reaction-diffusion equations with time delay

Hongliang Wang, Yujuan Chen, Haihua Lu (2012)

Annales Polonici Mathematici

We discuss the effect of time delay on blow-up of solutions to initial-boundary value problems for nonlinear reaction-diffusion equations. Firstly, two examples are given, which indicate that the delay can both induce and prevent the blow-up of solutions. Then we show that adding a new term with delay may not change the blow-up character of solutions.

Blowup solutions to Keller-Segel system and its simplified systems

Takasi Senba (2006)

Banach Center Publications

In this paper, we will consider blowup solutions to the so called Keller-Segel system and its simplified form. The Keller-Segel system was introduced to describe how cellular slime molds aggregate, owing to the motion of the cells toward a higher concentration of a chemical substance produced by themselves. We will describe a common conjecture in connection with blowup solutions to the Keller-Segel system, and some results for solutions to simplified versions of the Keller-Segel system, giving the...

Blow-up versus global existence of solutions to aggregation equations

Grzegorz Karch, Kanako Suzuki (2011)

Applicationes Mathematicae

A class of nonlinear viscous transport equations describing aggregation phenomena in biology is considered. General conditions on an interaction potential are obtained which lead either to the existence or to the nonexistence of global-in-time solutions.

Borel summable solutions of the Burgers equation

Grzegorz Łysik (2009)

Annales Polonici Mathematici

We give necessary and sufficient conditions for the formal power series solutions to the initial value problem for the Burgers equation t u - x ² u = x ( u ² ) to be convergent or Borel summable.

Boundary estimates for certain degenerate and singular parabolic equations

Benny Avelin, Ugo Gianazza, Sandro Salsa (2016)

Journal of the European Mathematical Society

We study the boundary behavior of non-negative solutions to a class of degenerate/singular parabolic equations, whose prototype is the parabolic p -Laplacian equation. Assuming that such solutions continuously vanish on some distinguished part of the lateral part S T of a Lipschitz cylinder, we prove Carleson-type estimates, and deduce some consequences under additional assumptions on the equation or the domain. We then prove analogous estimates for non-negative solutions to a class of degenerate/singular...

Boundary layer analysis and quasi-neutral limits in the drift-diffusion equations

Yue-Jun Peng (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We deal with boundary layers and quasi-neutral limits in the drift-diffusion equations. We first show that this limit is unique and determined by a system of two decoupled equations with given initial and boundary conditions. Then we establish the boundary layer equations and prove the existence and uniqueness of solutions with exponential decay. This yields a globally strong convergence (with respect to the domain) of the sequence of solutions and an optimal convergence rate O ( ε 1 2 ) to the quasi-neutral...

Boundary layer analysis and quasi-neutral limits in the drift-diffusion equations

Yue-Jun Peng (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We deal with boundary layers and quasi-neutral limits in the drift-diffusion equations. We first show that this limit is unique and determined by a system of two decoupled equations with given initial and boundary conditions. Then we establish the boundary layer equations and prove the existence and uniqueness of solutions with exponential decay. This yields a globally strong convergence (with respect to the domain) of the sequence of solutions and an optimal convergence rate O ( ε 1 2 ) to the quasi-neutral...

Boundary trace of positive solutions of nonlinear elliptic inequalities

Moshe Marcus, Laurent Véron (2004)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We develop a new method for proving the existence of a boundary trace, in the class of Borel measures, of nonnegative solutions of - Δ u + g ( x , u ) 0 in a smooth domain Ω under very general assumptions on g . This new definition which extends the previous notions of boundary trace is based upon a sweeping technique by solutions of Dirichlet problems with measure boundary data. We also prove a boundary pointwise blow-up estimate of any solution of such inequalities in terms of the Poisson kernel. If the nonlinearity...

Currently displaying 541 – 560 of 3302