A domain splitting method for heat conduction problems in composite materials
We consider a domain decomposition method for some unsteady heat conduction problem in composite structures. This linear model problem is obtained by homogenization of thin layers of fibres embedded into some standard material. For ease of presentation we consider the case of two space dimensions only. The set of finite element equations obtained by the backward Euler scheme is parallelized in a problem-oriented fashion by some noniterative overlapping domain splitting method, eventually enhanced...
We deal with a finite difference method for a wide class of nonlinear, in particular strongly nonlinear or quasi-linear, second-order partial differential functional equations of parabolic type with Dirichlet's condition. The functional dependence is of the Volterra type and the right-hand sides of the equations satisfy nonlinear estimates of the generalized Perron type with respect to the functional variable. Under the assumptions adopted, quasi-linear equations are a special case of nonlinear...
Skeletal patterning in the vertebrate limb, i.e., the spatiotemporal regulation of cartilage differentiation (chondrogenesis) during embryogenesis and regeneration, is one of the best studied examples of a multicellular developmental process. Recently [Alber et al., The morphostatic limit for a model of skeletal pattern formation in the vertebrate limb, Bulletin of Mathematical Biology, 2008, v70, pp. 460-483], a simplified two-equation reaction-diffusion system was developed to describe the interaction...
We investigate the evolution of an almost flat membrane driven by competition of the homogeneous, Frank, and bending energies as well as the coupling of the local order of the constituent molecules of the membrane to its curvature. We propose an alternative to the model in [J.B. Fournier and P. Galatoa, J. Phys. II7 (1997) 1509–1520; N. Uchida, Phys. Rev. E66 (2002) 040902] which replaces a Ginzburg-Landau penalization for the length of the order parameter by a rigid constraint. We introduce...
This paper deals with a reaction-diffusion system modeling a free boundary problem of the predator-prey type with prey-taxis over a one-dimensional habitat. The free boundary represents the spreading front of the predator species. The global existence and uniqueness of classical solutions to this system are established by the contraction mapping principle. With an eye on the biological interpretations, numerical simulations are provided which give a real insight into the behavior of the free boundary...
We focus on the free boundary problems for a Leslie-Gower predator-prey model with radial symmetry in a higher dimensional environment that is initially well populated by the prey. This free boundary problem is used to describe the spreading of a new introduced predator. We first establish that a spreading-vanishing dichotomy holds for this model. Namely, the predator either successfully spreads to the entire space as goes to infinity and survives in the new environment, or it fails to establish...
We address the issue of parameter variations in POD approximations of time-dependent problems, without any specific restriction on the form of parameter dependence. Considering a parabolic model problem, we propose a POD construction strategy allowing us to obtain some a priori error estimates controlled by the POD remainder – in the construction procedure – and some parameter-wise interpolation errors for the model solutions. We provide a thorough numerical assessment of this strategy with the...