Displaying 81 – 100 of 3301

Showing per page

A Hybrid Model Describing Different Morphologies of Tumor Invasion Fronts

M. Scianna, L. Preziosi (2012)

Mathematical Modelling of Natural Phenomena

The invasive capability is fundamental in determining the malignancy of a solid tumor. Revealing biomedical strategies that are able to partially decrease cancer invasiveness is therefore an important approach in the treatment of the disease and has given rise to multiple in vitro and in silico models. We here develop a hybrid computational framework, whose aim is to characterize the effects of the different cellular and subcellular mechanisms involved...

A linear scheme to approximate nonlinear cross-diffusion systems*

Hideki Murakawa (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper proposes a linear discrete-time scheme for general nonlinear cross-diffusion systems. The scheme can be regarded as an extension of a linear scheme based on the nonlinear Chernoff formula for the degenerate parabolic equations, which proposed by Berger et al. [RAIRO Anal. Numer.13 (1979) 297–312]. We analyze stability and convergence of the linear scheme. To this end, we apply the theory of reaction-diffusion system approximation. After discretizing the scheme in space, we obtain a versatile,...

A linear scheme to approximate nonlinear cross-diffusion systems*

Hideki Murakawa (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper proposes a linear discrete-time scheme for general nonlinear cross-diffusion systems. The scheme can be regarded as an extension of a linear scheme based on the nonlinear Chernoff formula for the degenerate parabolic equations, which proposed by Berger et al. [RAIRO Anal. Numer.13 (1979) 297–312]. We analyze stability and convergence of the linear scheme. To this end, we apply the theory of reaction-diffusion system approximation. After discretizing the scheme in space, we obtain a versatile,...

A local projection stabilization finite element method with nonlinear crosswind diffusion for convection-diffusion-reaction equations

Gabriel R. Barrenechea, Volker John, Petr Knobloch (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

An extension of the local projection stabilization (LPS) finite element method for convection-diffusion-reaction equations is presented and analyzed, both in the steady-state and the transient setting. In addition to the standard LPS method, a nonlinear crosswind diffusion term is introduced that accounts for the reduction of spurious oscillations. The existence of a solution can be proved and, depending on the choice of the stabilization parameter, also its uniqueness. Error estimates are derived...

A mathematical model for the recovery of human and economic activities in disaster regions

Atsushi Kadoya, Nobuyuki Kenmochi (2014)

Mathematica Bohemica

In this paper a model for the recovery of human and economic activities in a region, which underwent a serious disaster, is proposed. The model treats the case that the disaster region has an industrial collaboration with a non-disaster region in the production system and, especially, depends upon each other in technological development. The economic growth model is based on the classical theory of R. M. Solow (1956), and the full model is described as a nonlinear system of ordinary differential...

A matrix constructive method for the analytic-numerical solution of coupled partial differential systems

Lucas Jódar, Enrique A. Navarro, M. V. Ferrer (1995)

Applications of Mathematics

In this paper we construct analytic-numerical solutions for initial-boundary value systems related to the equation u t - A u x x - B u = 0 , where B is an arbitrary square complex matrix and A ia s matrix such that the real part of the eigenvalues of the matrix 1 2 ( A + A H ) is positive. Given an admissible error ε and a finite domain G , and analytic-numerical solution whose error is uniformly upper bounded by ε in G , is constructed.

A mechanochemical model of angiogenesis and vasculogenesis

Daphne Manoussaki (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Vasculogenesis and angiogenesis are two different mechanisms for blood vessel formation. Angiogenesis occurs when new vessels sprout from pre-existing vasculature in response to external chemical stimuli. Vasculogenesis occurs via the reorganization of randomly distributed cells into a blood vessel network. Experimental models of vasculogenesis have suggested that the cells exert traction forces onto the extracellular matrix and that these forces may play an important role in the network forming...

A mechanochemical model of angiogenesis and vasculogenesis

Daphne Manoussaki (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Vasculogenesis and angiogenesis are two different mechanisms for blood vessel formation. Angiogenesis occurs when new vessels sprout from pre-existing vasculature in response to external chemical stimuli. Vasculogenesis occurs via the reorganization of randomly distributed cells into a blood vessel network. Experimental models of vasculogenesis have suggested that the cells exert traction forces onto the extracellular matrix and that these forces may play an important role in the network forming...

A method for treating a class of non­linear diffusion problems

Stavros Busenberg, Mimmo Iannelli (1982)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si presenta un metodo di soluzione di una classe di problemi di diffusione nonlineare che hanno origine dalla teoria delle popolazioni con struttura di età.

A metric approach to a class of doubly nonlinear evolution equations and applications

Riccarda Rossi, Alexander Mielke, Giuseppe Savaré (2008)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

This paper deals with the analysis of a class of doubly nonlinear evolution equations in the framework of a general metric space. We propose for such equations a suitable metric formulation (which in fact extends the notion of Curve of Maximal Slopefor gradient flows in metric spaces, see [5]), and prove the existence of solutions for the related Cauchy problem by means of an approximation scheme by time discretization. Then, we apply our results to obtain the existence of solutions to abstract...

Currently displaying 81 – 100 of 3301