Displaying 101 – 120 of 221

Showing per page

Mathematical and numerical studies of non linear ferromagnetic materials

Patrick Joly, Olivier Vacus (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we are interested in the numerical modeling of absorbing ferromagnetic materials obeying the non-linear Landau-Lifchitz-Gilbert law with respect to the propagation and scattering of electromagnetic waves. In this work we consider the 1D problem. We first show that the corresponding Cauchy problem has a unique global solution. We then derive a numerical scheme based on an appropriate modification of Yee's scheme, that we show to preserve some important properties of the continuous...

Méthodes géométriques dans l’étude des équations d’Einstein

Serge Alinhac (2003/2004)

Séminaire Bourbaki

L’étude de l’équation des ondes et de ses perturbations a montré l’importance d’un certain nombre d’objets géométriques, tels que les cônes sortants et rentrants, les champs de Lorentz, des repères isotropes adaptés, etc. Parmi les systèmes d’équations hyperboliques non linéaires, les équations d’Einstein jouent un rôle central ; leur étude a nécessité, dans le cas d’un espace-temps courbe, la construction d’objets analogues à ceux du cas plat, cônes, repères adaptés, etc. La construction de ces...

Modulation of the Camassa-Holm equation and reciprocal transformations

Simonetta Abenda, Tamara Grava (2005)

Annales de l’institut Fourier

We derive the modulation equations (Whitham equations) for the Camassa-Holm (CH) equation. We show that the modulation equations are hyperbolic and admit a bi-Hamiltonian structure. Furthermore they are connected by a reciprocal transformation to the modulation equations of the first negative flow of the Korteweg de Vries (KdV) equation. The reciprocal transformation is generated by the Casimir of the second Poisson bracket of the KdV averaged flow. We show that the geometry...

Monotone (A,B) entropy stable numerical scheme for Scalar Conservation Laws with discontinuous flux

Adimurthi, Rajib Dutta, G. D. Veerappa Gowda, Jérôme Jaffré (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

For scalar conservation laws in one space dimension with a flux function discontinuous in space, there exist infinitely many classes of solutions which are L1 contractive. Each class is characterized by a connection (A,B) which determines the interface entropy. For solutions corresponding to a connection (A,B), there exists convergent numerical schemes based on Godunov or Engquist−Osher schemes. The natural question is how to obtain schemes, corresponding to computationally less expensive monotone...

Multi-scale Modelling for Threshold Dependent Differentiation

A. Q. Cai, Y. Peng, J. Wells, X. Dai, Q. Nie (2009)

Mathematical Modelling of Natural Phenomena

The maintenance of a stable stem cell population in the epidermis is important for robust regeneration of the stratified epithelium. The population size is usually regulated by cell secreted extracellular signalling molecules as well as intracellular molecules. In this paper, a simple model incorporating both levels of regulation is developed to examine the balance between growth and differentiation for the stem cell population. In particular, the dynamics of a known differentiation regulator c-Myc,...

New semi-Hamiltonian hierarchy related to integrable magnetic flows on surfaces

Misha Bialy, Andrey Mironov (2012)

Open Mathematics

We consider magnetic geodesic flows on the two-torus. We prove that the question of existence of polynomial in momenta first integrals on one energy level leads to a semi-Hamiltonian system of quasi-linear equations, i.e. in the hyperbolic regions the system has Riemann invariants and can be written in conservation laws form.

Nonlinear Pulse Propagation

Jeffrey Rauch (2001)

Journées équations aux dérivées partielles

This talk gives a brief review of some recent progress in the asymptotic analysis of short pulse solutions of nonlinear hyperbolic partial differential equations. This includes descriptions on the scales of geometric optics and diffractive geometric optics, and also studies of special situations where pulses passing through focal points can be analysed.

Non-unicité du transport par un champ de vecteurs presque B V

Nicolas Depauw (2002/2003)

Séminaire Équations aux dérivées partielles

Nous exposons un exemple de non unicité du problème de Cauchy non caractéristique pour l’équation de transport associé à un champ de vecteurs borné, à divergence nulle et néanmoins à coefficients peu réguliers

Numerical algorithms for perspective shape from shading

Michael Breuss, Emiliano Cristiani, Jean-Denis Durou, Maurizio Falcone, Oliver Vogel (2010)

Kybernetika

The Shape-From-Shading (SFS) problem is a fundamental and classic problem in computer vision. It amounts to compute the 3-D depth of objects in a single given 2-D image. This is done by exploiting information about the illumination and the image brightness. We deal with a recent model for Perspective SFS (PSFS) for Lambertian surfaces. It is defined by a Hamilton–Jacobi equation and complemented by state constraints boundary conditions. In this paper we investigate and compare three state-of-the-art...

Numerical analysis of Eulerian multi-fluid models in the context of kinetic formulations for dilute evaporating sprays

Frédérique Laurent (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

The purpose of this article is the analysis and the development of Eulerian multi-fluid models to describe the evolution of the mass density of evaporating liquid sprays. First, the classical multi-fluid model developed in [Laurent and Massot, Combust. Theor. Model.5 (2001) 537–572] is analyzed in the framework of an unsteady configuration without dynamical nor heating effects, where the evaporation process is isolated, since it is a key issue. The classical multi-fluid method consists then in...

Currently displaying 101 – 120 of 221