Previous Page 2

Displaying 21 – 37 of 37

Showing per page

Formation of Singularities for Weakly Non-Linear N×N Hyperbolic Systems

Boiti, Chiara, Manfrin, Renato (2001)

Serdica Mathematical Journal

We present some results on the formation of singularities for C^1 - solutions of the quasi-linear N × N strictly hyperbolic system Ut + A(U )Ux = 0 in [0, +∞) × Rx . Under certain weak non-linearity conditions (weaker than genuine non-linearity), we prove that the first order derivative of the solution blows-up in finite time.

Forms, functional calculus, cosine functions and perturbation

Wolfgang Arendt, Charles J. K. Batty (2007)

Banach Center Publications

In this article we describe properties of unbounded operators related to evolutionary problems. It is a survey article which also contains several new results. For instance we give a characterization of cosine functions in terms of mild well-posedness of the Cauchy problem of order 2, and we show that the property of having a bounded H -calculus is stable under rank-1 perturbations whereas the property of being associated with a closed form and the property of generating a cosine function are not....

Free decay of solutions to wave equations on a curved background

Serge Alinhac (2005)

Bulletin de la Société Mathématique de France

We investigate for which metric g (close to the standard metric g 0 ) the solutions of the corresponding d’Alembertian behave like free solutions of the standard wave equation. We give rather weak (i.e., non integrable) decay conditions on g - g 0 ; in particular, g - g 0 decays like t - 1 2 - ε along wave cones.

Free vibrations for the equation of a rectangular thin plate

Eduard Feireisl (1988)

Aplikace matematiky

In the paper, we deal with the equation of a rectangular thin plate with a simply supported boundary. The restoring force being an odd superlinear function of the vertical displacement, the existence of infinitely many nonzero time-periodic solutions is proved.

Fully adaptive multiresolution schemes for strongly degenerate parabolic equations in one space dimension

Raimund Bürger, Ricardo Ruiz, Kai Schneider, Mauricio Sepúlveda (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a fully adaptive multiresolution scheme for spatially one-dimensional quasilinear strongly degenerate parabolic equations with zero-flux and periodic boundary conditions. The numerical scheme is based on a finite volume discretization using the Engquist-Osher numerical flux and explicit time stepping. An adaptive multiresolution scheme based on cell averages is then used to speed up the CPU time and the memory requirements of the underlying finite volume scheme, whose first-order...

Functions of finite fractional variation and their applications to fractional impulsive equations

Dariusz Idczak (2017)

Czechoslovak Mathematical Journal

We introduce a notion of a function of finite fractional variation and characterize such functions together with their weak σ -additive fractional derivatives. Next, we use these functions to study differential equations of fractional order, containing a σ -additive term—we prove existence and uniqueness of a solution as well as derive a Cauchy formula for the solution. We apply these results to impulsive equations, i.e. equations containing the Dirac measures.

Fundamental solutions and singular shocks in scalar conservation laws.

Emmanuel Chasseigne (2003)

Revista Matemática Complutense

We study the existence and non-existence of fundamental solutions for the scalar conservation laws ut + f(u)x = 0, related to convexity assumptions on f. We also study the limits of those solutions as the initial mass goes to infinity. We especially prove the existence of so-called Friendly Giants and Infinite Shock Solutions according to the convexity of f, which generalize the explicit power case f(u) = um. We introduce an extended notion of solution and entropy criterion to allow infinite shocks...

Currently displaying 21 – 37 of 37

Previous Page 2