Displaying 41 – 60 of 206

Showing per page

Singular solutions to systems of conservation laws and their algebraic aspects

V. M. Shelkovich* (2010)

Banach Center Publications

We discuss the definitions of singular solutions (in the form of integral identities) to systems of conservation laws such as shocks, δ-, δ’-, and δ ( n ) -shocks (n = 2,3,...). Using these definitions, the Rankine-Hugoniot conditions for δ- and δ’-shocks are derived. The weak asymptotics method for the solution of the Cauchy problems admitting δ- and δ’-shocks is briefly described. The algebraic aspects of such singular solutions are studied. Namely, explicit formulas for flux-functions of singular solutions...

Singularly perturbed hyperbolic problems on metric graphs: asymptotics of solutions

Yuriy Golovaty, Volodymyr Flyud (2017)

Open Mathematics

We are interested in the evolution phenomena on star-like networks composed of several branches which vary considerably in physical properties. The initial boundary value problem for singularly perturbed hyperbolic differential equation on a metric graph is studied. The hyperbolic equation becomes degenerate on a part of the graph as a small parameter goes to zero. In addition, the rates of degeneration may differ in different edges of the graph. Using the boundary layer method the complete asymptotic...

Sistemi iperbolici di leggi di conservazione

Alberto Bressan (2000)

Bollettino dell'Unione Matematica Italiana

This survey paper provides a brief introduction to the mathematical theory of hyperbolic systems of conservation laws in one space dimension. After reviewing some basic concepts, we describe the fundamental theorem of Glimm on the global existence of BV solutions. We then outline the more recent results on uniqueness and stability of entropy weak solutions. Finally, some major open problems and research directions are discussed in the last section.

Small data scattering for nonlinear Schrödinger wave and Klein-Gordon equations

Makoto Nakamura, Tohru Ozawa (2002)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Small data scattering for nonlinear Schrödinger equations (NLS), nonlinear wave equations (NLW), nonlinear Klein-Gordon equations (NLKG) with power type nonlinearities is studied in the scheme of Sobolev spaces on the whole space n with order s < n / 2 . The assumptions on the nonlinearities are described in terms of power behavior p 1 at zero and p 2 at infinity such as 1 + 4 / n p 1 p 2 1 + 4 / ( n - 2 s ) for NLS and NLKG, and 1 + 4 / ( n - 1 ) p 1 p 2 1 + 4 / ( n - 2 s ) for NLW.

Small time-periodic solutions to a nonlinear equation of a vibrating string

Eduard Feireisl (1987)

Aplikace matematiky

In this paper, the system consisting of two nonlinear equations is studied. The former is hyperbolic with a dissipative term and the latter is elliptic. In a special case, the system reduces to the approximate model for the damped transversal vibrations of a string proposed by G. F. Carrier and R. Narasimha. Taking advantage of accelerated convergence methods, the existence of at least one time-periodic solution is stated on condition that the right-hand side of the system is sufficiently small.

Currently displaying 41 – 60 of 206