Displaying 61 – 80 of 107

Showing per page

Problème mixte hyperbolique avec saut sur la condition aux limites

Jean-Marc Delort (1989)

Annales de l'institut Fourier

Ce travail est consacré à l’étude du problème mixte linéaire pour un système N × N non caractéristique, strictement hyperbolique, de degré 1, dans le cas où la condition aux limites présente un saut sur une hypersurface non caractéristique du bord. Sous la condition de Lopatinski uniforme hors de cette hypersurface et sous une hypothèse supplémentaire le long de celle-ci, on prouve un résultat d’existence et d’unicité dans l’espace de Sobolev H ν ν 0 , 1 2 . On étudie ensuite la propagation de la régularité conormale...

Problèmes mixtes hyperboliques bien-posés

Jean-François Coulombel (2004)

Journées Équations aux dérivées partielles

On présente une famille de problèmes mixtes hyperboliques linéaires bien-posés au sens de Hadamard. La nouveauté consiste à autoriser une perte de régularité entre les termes source et la solution. On montre ainsi que la condition de Lopatinskii faible est suffisante pour obtenir le caractère bien-posé des problèmes mixtes hyperboliques linéaires.

Propagation de la régularité locale de solutions d'équations hyperboliques non linéaires

Patrick Gérard, Jeffrey Rauch (1987)

Annales de l'institut Fourier

Pour tout réel positif s , on étudie la propagation de la régularité locale H s pour des solutions d’équations aux dérivées partielles hyperboliques non linéaires, admettant a priori la régularité minimale permettant de définir les expressions non linéaires figurant dans l’équation. En particulier, on démontre le théorème de propagation dans le cas des solutions essentiellement bornées (resp. lipschitziennes) de systèmes du premier ordre semi-linéaires (resp. quasi-linéaires).

Currently displaying 61 – 80 of 107