Displaying 781 – 800 of 2227

Showing per page

Global time estimates for solutions to equations of dissipative type

Michael Ruzhansky, James Smith (2005)

Journées Équations aux dérivées partielles

Global time estimates of L p - L q norms of solutions to general strictly hyperbolic partial differential equations are considered. The case of special interest in this paper are equations exhibiting the dissipative behaviour. Results are applied to discuss time decay estimates for Fokker-Planck equations and for wave type equations with negative mass.

Godunov method for nonconservative hyperbolic systems

María Luz Muñoz-Ruiz, Carlos Parés (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is concerned with the numerical approximation of Cauchy problems for one-dimensional nonconservative hyperbolic systems. The theory developed by Dal Maso et al. [J. Math. Pures Appl.74 (1995) 483–548] is used in order to define the weak solutions of the system: an interpretation of the nonconservative products as Borel measures is given, based on the choice of a family of paths drawn in the phase space. Even if the family of paths can be chosen arbitrarily, it is natural to require this...

Green’s function pointwise estimates for the modified Lax–Friedrichs scheme

Pauline Godillon (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The aim of this paper is to find estimates of the Green’s function of stationary discrete shock profiles and discrete boundary layers of the modified Lax–Friedrichs numerical scheme, by using techniques developed by Zumbrun and Howard [27] in the continuous viscous setting.

Green's function pointwise estimates for the modified Lax–Friedrichs scheme

Pauline Godillon (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The aim of this paper is to find estimates of the Green's function of stationary discrete shock profiles and discrete boundary layers of the modified Lax–Friedrichs numerical scheme, by using techniques developed by Zumbrun and Howard [CITE] in the continuous viscous setting.

Hamilton-Jacobi functional differential equations with unbounded delay

Adam Nadolski (2003)

Annales Polonici Mathematici

The Cauchy problem for nonlinear functional differential equations on the Haar pyramid is considered. The phase space for generalized solutions is constructed. An existence theorem is proved by using the method of successive approximations. The theory of characteristics and integral inequalities are used. Examples of phase spaces are given.

Harmonic averages, exact difference schemes and local Green’s functions in variable coefficient PDE problems

Owe Axelsson, János Karátson (2013)

Open Mathematics

A brief survey is given to show that harmonic averages enter in a natural way in the numerical solution of various variable coefficient problems, such as in elliptic and transport equations, also of singular perturbation types. Local Green’s functions used as test functions in the Petrov-Galerkin finite element method combined with harmonic averages can be very efficient and are related to exact difference schemes.

High order semi-lagrangian particle methods for transport equations: numerical analysis and implementation issues

G.-H. Cottet, J.-M. Etancelin, F. Perignon, C. Picard (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper is devoted to the definition, analysis and implementation of semi-Lagrangian methods as they result from particle methods combined with remeshing. We give a complete consistency analysis of these methods, based on the regularity and momentum properties of the remeshing kernels, and a stability analysis of a large class of second and fourth order methods. This analysis is supplemented by numerical illustrations. We also describe a general approach to implement these methods in the context...

Currently displaying 781 – 800 of 2227