Displaying 41 – 60 of 781

Showing per page

A regularity criterion for the 2D MHD and viscoelastic fluid equations

Zhuan Ye (2015)

Annales Polonici Mathematici

This paper is dedicated to a regularity criterion for the 2D MHD equations and viscoelastic equations. We prove that if the magnetic field B, respectively the local deformation gradient F, satisfies B , F L q ( 0 , T ; L p ( ² ) ) for 1/p + 1/q = 1 and 2 < p ≤ ∞, then the corresponding local solution can be extended beyond time T.

A result of existence for an original convection-diffusion equation.

Gérard Gagneux, Guy Vallet (2005)

RACSAM

En este artículo se estudia el análisis matemático de una ley de conservación que no es clásica. El modelo describe procesos estatigráficos en Geología y tiene en cuenta una condición de tasa de erosión limitada. En primer lugar se presentan el modelo físico y la formulación matemática (posiblemente nueva). Tras enunciar la definición solución se presentan las herramientas que permiten probar la existencia de soluciones.

A review on the improved regularity for the primitive equations

Francisco Guillén-González, María Ángeles Rodríguez-Bellido (2005)

Banach Center Publications

In this work we will study some types of regularity properties of solutions for the geophysical model of hydrostatic Navier-Stokes equations, the so-called Primitive Equations (PE). Also, we will present some results about uniqueness and asymptotic behavior in time.

A second-order multi-fluid model for evaporating sprays

Guillaume Dufour, Philippe Villedieu (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The aim of this paper is to present a method using both the ideas of sectional approach and moment methods in order to accurately simulate evaporation phenomena in gas-droplets flows. Using the underlying kinetic interpretation of the sectional method [Y. Tambour, Combust. Flame 60 (1985) 15–28] exposed in [F. Laurent and M. Massot, Combust. Theory Model. 5 (2001) 537–572], we propose an extension of this approach based on a more accurate representation of the droplet size number density in each...

A second-order multi-fluid model for evaporating sprays

Guillaume Dufour, Philippe Villedieu (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The aim of this paper is to present a method using both the ideas of sectional approach and moment methods in order to accurately simulate evaporation phenomena in gas-droplets flows. Using the underlying kinetic interpretation of the sectional method [Y. Tambour, Combust. Flame60 (1985) 15–28] exposed in [F. Laurent and M. Massot, Combust. Theory Model.5 (2001) 537–572], we propose an extension of this approach based on a more accurate representation of the droplet size number density in each...

A short note on L q theory for Stokes problem with a pressure-dependent viscosity

Václav Mácha (2016)

Czechoslovak Mathematical Journal

We study higher local integrability of a weak solution to the steady Stokes problem. We consider the case of a pressure- and shear-rate-dependent viscosity, i.e., the elliptic part of the Stokes problem is assumed to be nonlinear and it depends on p and on the symmetric part of a gradient of u , namely, it is represented by a stress tensor T ( D u , p ) : = ν ( p , | D | 2 ) D which satisfies r -growth condition with r ( 1 , 2 ] . In order to get the main result, we use Calderón-Zygmund theory and the method which was presented for example in...

A study of Galerkin method for the heat convection equations

Polina Vinogradova, Anatoli Zarubin (2012)

Applications of Mathematics

The paper investigates the Galerkin method for an initial boundary value problem for heat convection equations. New error estimates for the approximate solutions and their derivatives in strong norm are obtained.

A uniqueness result for a model for mixtures in the absence of external forces and interaction momentum

Jens Frehse, Sonja Goj, Josef Málek (2005)

Applications of Mathematics

We consider a continuum model describing steady flows of a miscible mixture of two fluids. The densities ρ i of the fluids and their velocity fields u ( i ) are prescribed at infinity: ρ i | = ρ i > 0 , u ( i ) | = 0 . Neglecting the convective terms, we have proved earlier that weak solutions to such a reduced system exist. Here we establish a uniqueness type result: in the absence of the external forces and interaction terms, there is only one such solution, namely ρ i ρ i , u ( i ) 0 , i = 1 , 2 .

A WKB analysis of the Alfvén spectrum of the linearized magnetohydrodynamics equations

Manuel Núñez, Jesús Rojo (1993)

Applications of Mathematics

Small perturbations of an equilibrium plasma satisfy the linearized magnetohydrodynamics equations. These form a mixed elliptic-hyperbolic system that in a straight-field geometry and for a fixed time frequency may be reduced to a single scalar equation div A 1 Δ u + A 2 u = 0 , where A 1 may have singularities in the domaind U of definition. We study the case when U is a half-plane and u possesses high Fourier components, analyzing the changes brought about by the singularity A 1 = . We show that absorptions of energy takes...

About global existence and asymptotic behavior for two dimensional gravity water waves

Thomas Alazard (2012/2013)

Séminaire Laurent Schwartz — EDP et applications

The main result of this talk is a global existence theorem for the water waves equation with smooth, small, and decaying at infinity Cauchy data. We obtain moreover an asymptotic description in physical coordinates of the solution, which shows that modified scattering holds.The proof is based on a bootstrap argument involving L 2 and L estimates. The L 2 bounds are proved in the paper [5]. They rely on a normal forms paradifferential method allowing one to obtain energy estimates on the Eulerian formulation...

About steady transport equation I – L p -approach in domains with smooth boundaries

Antonín Novotný (1996)

Commentationes Mathematicae Universitatis Carolinae

We investigate the steady transport equation λ z + w · z + a z = f , λ > 0 in various domains (bounded or unbounded) with smooth noncompact boundaries. The functions w , a are supposed to be small in appropriate norms. The solution is studied in spaces of Sobolev type (classical Sobolev spaces, Sobolev spaces with weights, homogeneous Sobolev spaces, dual spaces to Sobolev spaces). The particular stress is put onto the problem to extend the results to as less regular vector fields w , a , as possible (conserving the requirement of...

Abstracts of theses in mathematics

(2000)

Commentationes Mathematicae Universitatis Carolinae

Žemlička, Jan: Structure of steady rings. Zemek, Martin: On some aspects of subdifferentiality of functions on Banach spaces. Hlubinka, Daniel: Construction of Markov kernels with application for moment problem solution. Somberg, Petr: Properties of the BGG resolution on the spheres. Krump, Lukáš: Construction of Bernstein-Gelfand-Gelfand for almost hermitian symmetric structures. Kolář, Jan: Simultaneous extension operators. Porosity.

Adiabatic Evolution of Coupled Waves for a Schrödinger-Korteweg-de Vries System

W. Abou Salem (2012)

Mathematical Modelling of Natural Phenomena

The effective dynamics of interacting waves for coupled Schrödinger-Korteweg-de Vries equations over a slowly varying random bottom is rigorously studied. One motivation for studying such a system is better understanding the unidirectional motion of interacting surface and internal waves for a fluid system that is formed of two immiscible layers. It was shown recently by Craig-Guyenne-Sulem [1] that in the regime where the internal wave has a large...

Air entrainment in transient flows in closed water pipes : A two-layer approach

C. Bourdarias, M. Ersoy, Stéphane Gerbi (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we first construct a model for free surface flows that takes into account the air entrainment by a system of four partial differential equations. We derive it by taking averaged values of gas and fluid velocities on the cross surface flow in the Euler equations (incompressible for the fluid and compressible for the gas). The obtained system is conditionally hyperbolic. Then, we propose a mathematical kinetic interpretation of this system to finally construct a two-layer kinetic scheme...

Almost global solutions of the free boundary problem for the equations of a magnetohydrodynamic incompressible fluid

Piotr Kacprzyk (2004)

Applicationes Mathematicae

Almost global in time existence of solutions for equations describing the motion of a magnetohydrodynamic incompressible fluid in a domain bounded by a free surfaced is proved. In the exterior domain we have an electromagnetic field which is generated by some currents which are located on a fixed boundary. We prove that a solution exists for t ∈ (0,T), where T > 0 is large if the data are small.

Currently displaying 41 – 60 of 781