Displaying 661 – 680 of 787

Showing per page

The scalar Oseen operator - Δ + / x 1 in 2

Chérif Amrouche, Hamid Bouzit (2008)

Applications of Mathematics

This paper solves the scalar Oseen equation, a linearized form of the Navier-Stokes equation. Because the fundamental solution has anisotropic properties, the problem is set in a Sobolev space with isotropic and anisotropic weights. We establish some existence results and regularities in L p theory.

The sharp-interface approach for fluids with phase change: Riemann problems and ghost fluid techniques

Christian Merkle, Christian Rohde (2007)

ESAIM: Mathematical Modelling and Numerical Analysis


Systems of mixed hyperbolic-elliptic conservation laws can serve as models for the evolution of a liquid-vapor fluid with possible sharp dynamical phase changes. We focus on the equations of ideal hydrodynamics in the isothermal case and introduce a thermodynamically consistent solution of the Riemann problem in one space dimension. This result is the basis for an algorithm of ghost fluid type to solve the sharp-interface model numerically. In particular the approach allows to resolve phase transitions...

The vortex method for 2D ideal flows in the exterior of a disk

Diogo Arsénio, Emmanuel Dormy, Christophe Lacave (2014)

Journées Équations aux dérivées partielles

The vortex method is a common numerical and theoretical approach used to implement the motion of an ideal flow, in which the vorticity is approximated by a sum of point vortices, so that the Euler equations read as a system of ordinary differential equations. Such a method is well justified in the full plane, thanks to the explicit representation formulas of Biot and Savart. In an exterior domain, we also replace the impermeable boundary by a collection of point vortices generating the circulation...

The well-posedness of a swimming model in the 3-D incompressible fluid governed by the nonstationary Stokes equation

Alexander Khapalov (2013)

International Journal of Applied Mathematics and Computer Science

We introduce and investigate the well-posedness of a model describing the self-propelled motion of a small abstract swimmer in the 3-D incompressible fluid governed by the nonstationary Stokes equation, typically associated with low Reynolds numbers. It is assumed that the swimmer's body consists of finitely many subsequently connected parts, identified with the fluid they occupy, linked by rotational and elastic Hooke forces. Models like this are of interest in biological and engineering applications...

Theoretical and numerical study of a quasi-linear Zakharov system describing Landau damping

R. Belaouar, T. Colin, G. Gallice, C. Galusinski (2006)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we study a Zakharov system coupled to an electron diffusion equation in order to describe laser-plasma interactions. Starting from the Vlasov-Maxwell system, we derive a nonlinear Schrödinger like system which takes into account the energy exchanged between the plasma waves and the electrons via Landau damping. Two existence theorems are established in a subsonic regime. Using a time-splitting, spectral discretizations for the Zakharov system and a finite difference scheme for the...

Theoretical and numerical study of a quasi-linear Zakharov system describing Landau damping

R. Belaouar, T. Colin, G. Gallice, C. Galusinski (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we study a Zakharov system coupled to an electron diffusion equation in order to describe laser-plasma interactions. Starting from the Vlasov-Maxwell system, we derive a nonlinear Schrödinger like system which takes into account the energy exchanged between the plasma waves and the electrons via Landau damping. Two existence theorems are established in a subsonic regime. Using a time-splitting, spectral discretizations for the Zakharov system and a finite difference scheme for...

Thermo-viscous fluid flow in porous slab bounded between two impermeable parallel plates in relative motion: Four stage algorithm approach

Nalimela Pothanna, Podila Aparna, M. Pavankumar Reddy, R. Archana Reddy, M. Clement Joe Anand (2024)

Applications of Mathematics

The problem of an approximate solution of thermo-viscous fluid flow in a porous slab bounded between two impermeable parallel plates in relative motion is examined in this paper. The two plates are kept at two different temperatures and the flow is generated by a constant pressure gradient together with the motion of one of the plates relative to the other. The velocity and temperature distributions have been obtained by a four-stage algorithm approach. It is worth mentioning that reverse effects...

Time domain simulation of a piano. Part 1: model description

J. Chabassier, A. Chaigne, P. Joly (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The purpose of this study is the time domain modeling of a piano. We aim at explaining the vibratory and acoustical behavior of the piano, by taking into account the main elements that contribute to sound production. The soundboard is modeled as a bidimensional thick, orthotropic, heterogeneous, frequency dependent damped plate, using Reissner Mindlin equations. The vibroacoustics equations allow the soundboard to radiate into the surrounding air, in which we wish to compute the complete acoustical...

Time Spectral Method for Periodic and Quasi-Periodic Unsteady Computations on Unstructured Meshes

D. J. Mavriplis, Z. Yang (2011)

Mathematical Modelling of Natural Phenomena

For flows with strong periodic content, time-spectral methods can be used to obtain time-accurate solutions at substantially reduced cost compared to traditional time-implicit methods which operate directly in the time domain. However, these methods are only applicable in the presence of fully periodic flows, which represents a severe restriction for many aerospace engineering problems. This paper presents an extension of the time-spectral approach...

Two phase flow arising in hydraulics

Ivan Straškraba (2015)

Applications of Mathematics

The aim of this paper is to proceed in the study of the system which will be specified below. The system concerns fluid flow in a simple hydraulic system consisting of a pipe with generator on one side and a valve or some more complicated hydraulic elements on the other end of the pipe. The purpose of the research is a rigorous mathematical analysis of the corresponding linearized system. Here, we analyze the linearized problem near the fixed steady state which already have been explicitly described....

Currently displaying 661 – 680 of 787