Stability of peakons for the generalized Camassa-Holm equation.
Partial differential equations endowed with a Hamiltonian structure, like the Korteweg–de Vries equation and many other more or less classical models, are known to admit rich families of periodic travelling waves. The stability theory for these waves is still in its infancy though. The issue has been tackled by various means. Of course, it is always possible to address stability from the spectral point of view. However, the link with nonlinear stability - in fact, orbital stability, since we are...
We investigate the asymptotic limit of solutions to the Navier-Stokes-Fourier system with the Mach number proportional to a small parameter , the Froude number proportional to and when the fluid occupies large domain with spatial obstacle of rough surface varying when . The limit velocity field is solenoidal and satisfies the incompressible Oberbeck–Boussinesq approximation. Our studies are based on weak solutions approach and in order to pass to the limit in a convective term we apply the spectral...
This paper presents a stabilization result for weak solutions of degenerate parabolic equations in divergence form. More precisely, the result asserts that the global-in-time weak solution converges to the average of the initial data in some topology as time goes to infinity. It is also shown that the result can be applied to a degenerate parabolic-elliptic Keller-Segel system.
We consider a linear coupled system of quasi-electrostatic equations which govern the evolution of a 3-D layered piezoelectric body. Assuming that a dissipative effect is effective at the boundary, we study the uniform stabilization problem. We prove that this is indeed the case, provided some geometric conditions on the region and the interfaces hold. We also assume a monotonicity condition on the coefficients. As an application, we deduce exact controllability of the system with boundary control...
We consider a dynamical one-dimensional nonlinear von Kármán model for beams depending on a parameter and study its asymptotic behavior for large, as . Introducing appropriate damping mechanisms we show that the energy of solutions of the corresponding damped models decay exponentially uniformly with respect to the parameter . In order for this to be true the damping mechanism has to have the appropriate scale with respect to . In the limit as we obtain damped Berger–Timoshenko beam models...
We consider a dynamical one-dimensional nonlinear von Kármán model for beams depending on a parameter ε > 0 and study its asymptotic behavior for t large, as ε → 0. Introducing appropriate damping mechanisms we show that the energy of solutions of the corresponding damped models decay exponentially uniformly with respect to the parameter ε. In order for this to be true the damping mechanism has to have the appropriate scale with respect to ε. In the limit as ε → 0 we obtain damped Berger–Timoshenko...
We prove uniform local energy estimates of solutions to the damped Schrödinger equation in exterior domains under the hypothesis of the Exterior Geometric Control. These estimates are derived from the resolvent properties.
We study the stabilization of global solutions of the Kawahara (K) equation in a bounded interval, under the effect of a localized damping mechanism. The Kawahara equation is a model for small amplitude long waves. Using multiplier techniques and compactness arguments we prove the exponential decay of the solutions of the (K) model. The proof requires of a unique continuation theorem and the smoothing effect of the (K) equation on the real line, which are proved in this work.
We study the stabilization of global solutions of the Kawahara (K) equation in a bounded interval, under the effect of a localized damping mechanism. The Kawahara equation is a model for small amplitude long waves. Using multiplier techniques and compactness arguments we prove the exponential decay of the solutions of the (K) model. The proof requires of a unique continuation theorem and the smoothing effect of the (K) equation on the real line, which are proved in this work.
In this paper we study a one dimensional model of ferromagnetic nano-wires of finite length. First we justify the model by Γ-convergence arguments. Furthermore we prove the existence of wall profiles. These walls being unstable, we stabilize them by the mean of an applied magnetic field.
In this paper we study a one dimensional model of ferromagnetic nano-wires of finite length. First we justify the model by Γ-convergence arguments. Furthermore we prove the existence of wall profiles. These walls being unstable, we stabilize them by the mean of an applied magnetic field.