Displaying 361 – 380 of 508

Showing per page

On the nonhamiltonian character of shocks in 2-D pressureless gas

Yu. G. Rykov (2002)

Bollettino dell'Unione Matematica Italiana

The paper deals with the 2-D system of gas dynamics without pressure which was introduced in 1970 by Ua. Zeldovich to describe the formation of largescale structure of the Universe. Such system occurs to be an intermediate object between the systems of ordinary differential equations and hyperbolic systems of PDE. The main its feature is the arising of singularities: discontinuities for velocity and d-functions of various types for density. The rigorous notion of generalized solutions in terms of...

On the numerical solutions of some fractional ordinary differential equations by fractional Adams-Bashforth-Moulton method

Haci Mehmet Baskonus, Hasan Bulut (2015)

Open Mathematics

In this paper, we apply the Fractional Adams-Bashforth-Moulton Method for obtaining the numerical solutions of some linear and nonlinear fractional ordinary differential equations. Then, we construct a table including numerical results for both fractional differential equations. Then, we draw two dimensional surfaces of numerical solutions and analytical solutions by considering the suitable values of parameters. Finally, we use the L2 nodal norm and L∞ maximum nodal norm to evaluate the accuracy...

On the Origin of Chaos in the Belousov-Zhabotinsky Reaction in Closed and Unstirred Reactors

M. A. Budroni, M. Rustici, E. Tiezzi (2010)

Mathematical Modelling of Natural Phenomena

We investigate the origin of deterministic chaos in the Belousov–Zhabotinsky (BZ) reaction carried out in closed and unstirred reactors (CURs). In detail, we develop a model on the idea that hydrodynamic instabilities play a driving role in the transition to chaotic dynamics. A set of partial differential equations were derived by coupling the two variable Oregonator–diffusion system to the Navier–Stokes equations. This approach allows us to shed light on the correlation between chemical oscillations...

On the parabolic-elliptic Patlak-Keller-Segel system in dimension 2 and higher

Adrien Blanchet (2011/2012)

Séminaire Laurent Schwartz — EDP et applications

This review is dedicated to recent results on the 2d parabolic-elliptic Patlak-Keller-Segel model, and on its variant in higher dimensions where the diffusion is of critical porous medium type. Both of these models have a critical mass M c such that the solutions exist globally in time if the mass is less than M c and above which there are solutions which blowup in finite time. The main tools, in particular the free energy, and the idea of the methods are set out. A number of open questions are also...

On the parameter in augmented Lagrangian preconditioning for isogeometric discretizations of the Navier-Stokes equations

Jiří Egermaier, Hana Horníková (2022)

Applications of Mathematics

In this paper, we deal with the optimal choice of the parameter γ for augmented Lagrangian preconditioning of GMRES method for efficient solution of linear systems obtained from discretization of the incompressible Navier-Stokes equations. We consider discretization of the equations using the B-spline based isogeometric analysis approach. We are interested in the dependence of the convergence on the parameter γ for various problem parameters (Reynolds number, mesh refinement) and especially for...

On the persistence of decorrelation in the theory of wave turbulence

Anne-Sophie de Suzzoni (2013)

Journées Équations aux dérivées partielles

We study the statistical properties of the solutions of the Kadomstev-Petviashvili equations (KP-I and KP-II) on the torus when the initial datum is a random variable. We give ourselves a random variable u 0 with values in the Sobolev space H s with s big enough such that its Fourier coefficients are independent from each other. We assume that the laws of these Fourier coefficients are invariant under multiplication by e i θ for all θ . We investigate about the persistence of the decorrelation between the...

On the Plasma-Charge problem

Mario Pulvirenti (2009/2010)

Séminaire Équations aux dérivées partielles

This short report is a review on recent results of S. Caprino, C. Marchioro, E. Miot and the author on the initial value problem associated to the evolution of a continuous distribution of charges (plasma) in presence of a finite number of point charges.

On the radius of spatial analyticity for the higher order nonlinear dispersive equation

Aissa Boukarou, Kaddour Guerbati, Khaled Zennir (2022)

Mathematica Bohemica

In this work, using bilinear estimates in Bourgain type spaces, we prove the local existence of a solution to a higher order nonlinear dispersive equation on the line for analytic initial data u 0 . The analytic initial data can be extended as holomorphic functions in a strip around the x -axis. By Gevrey approximate conservation law, we prove the existence of the global solutions, which improve earlier results of Z. Zhang, Z. Liu, M. Sun, S. Li, (2019).

Currently displaying 361 – 380 of 508