Displaying 21 – 40 of 470

Showing per page

A continuity property for the inverse of Mañé's projection

Zdeněk Skalák (1998)

Applications of Mathematics

Let X be a compact subset of a separable Hilbert space H with finite fractal dimension d F ( X ) , and P 0 an orthogonal projection in H of rank greater than or equal to 2 d F ( X ) + 1 . For every δ > 0 , there exists an orthogonal projection P in H of the same rank as P 0 , which is injective when restricted to X and such that P - P 0 < δ . This result follows from Mañé’s paper. Thus the inverse ( P | X ) - 1 of the restricted mapping P | X X P X is well defined. It is natural to ask whether there exists a universal modulus of continuity for the inverse of Mañé’s...

A counterexample to the smoothness of the solution to an equation arising in fluid mechanics

Stephen Montgomery-Smith, Milan Pokorný (2002)

Commentationes Mathematicae Universitatis Carolinae

We analyze the equation coming from the Eulerian-Lagrangian description of fluids. We discuss a couple of ways to extend this notion to viscous fluids. The main focus of this paper is to discuss the first way, due to Constantin. We show that this description can only work for short times, after which the ``back to coordinates map'' may have no smooth inverse. Then we briefly discuss a second way that uses Brownian motion. We use this to provide a plausibility argument for the global regularity for...

A diffuse interface fractional time-stepping technique for incompressible two-phase flows with moving contact lines

Abner J. Salgado (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

For a two phase incompressible flow we consider a diffuse interface model aimed at addressing the movement of three-phase (fluid-fluid-solid) contact lines. The model consists of the Cahn Hilliard Navier Stokes system with a variant of the Navier slip boundary conditions. We show that this model possesses a natural energy law. For this system, a new numerical technique based on operator splitting and fractional time-stepping is proposed. The method is shown to be unconditionally stable. We present...

A direct proof of the Caffarelli-Kohn-Nirenberg theorem

Jörg Wolf (2008)

Banach Center Publications

In the present paper we give a new proof of the Caffarelli-Kohn-Nirenberg theorem based on a direct approach. Given a pair (u,p) of suitable weak solutions to the Navier-Stokes equations in ℝ³ × ]0,∞[ the velocity field u satisfies the following property of partial regularity: The velocity u is Lipschitz continuous in a neighbourhood of a point (x₀,t₀) ∈ Ω × ]0,∞ [ if l i m s u p R 0 1 / R Q R ( x , t ) | c u r l u × u / | u | | ² d x d t ε * for a sufficiently small ε * > 0 .

A finite element convergence analysis for 3D Stokes equations in case of variational crimes

Petr Knobloch (2000)

Applications of Mathematics

We investigate a finite element discretization of the Stokes equations with nonstandard boundary conditions, defined in a bounded three-dimensional domain with a curved, piecewise smooth boundary. For tetrahedral triangulations of this domain we prove, under general assumptions on the discrete problem and without any additional regularity assumptions on the weak solution, that the discrete solutions converge to the weak solution. Examples of appropriate finite element spaces are given.

A Fortin operator for two-dimensional Taylor-Hood elements

Richard S. Falk (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

A standard method for proving the inf-sup condition implying stability of finite element approximations for the stationary Stokes equations is to construct a Fortin operator. In this paper, we show how this can be done for two-dimensional triangular and rectangular Taylor-Hood methods, which use continuous piecewise polynomial approximations for both velocity and pressure.

A free boundary stationary magnetohydrodynamic problem in connection with the electromagnetic casting process

Tomasz Roliński (1995)

Annales Polonici Mathematici

We investigate the behaviour of the meniscus of a drop of liquid aluminium in the neighbourhood of a state of equilibrium under the influence of weak electromagnetic forces. The mathematical model comprises both Maxwell and Navier-Stokes equations in 2D. The meniscus is governed by the Young-Laplace equation, the data being the jump of the normal stress. To show the existence and uniqueness of the solution we use the classical implicit function theorem. Moreover, the differentiability of the operator...

A frictional contact problem with wear and damage for electro-viscoelastic materials

Mohamed Selmani, Lynda Selmani (2010)

Applications of Mathematics

We consider a quasistatic contact problem for an electro-viscoelastic body. The contact is frictional and bilateral with a moving rigid foundation which results in the wear of the contacting surface. The damage of the material caused by elastic deformation is taken into account, its evolution is described by an inclusion of parabolic type. We present a weak formulation for the model and establish existence and uniqueness results. The proofs are based on classical results for elliptic variational...

A full discretization of the time-dependent Navier-Stokes equations by a two-grid scheme

Hyam Abboud, Toni Sayah (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

We study a two-grid scheme fully discrete in time and space for solving the Navier-Stokes system. In the first step, the fully non-linear problem is discretized in space on a coarse grid with mesh-size H and time step k. In the second step, the problem is discretized in space on a fine grid with mesh-size h and the same time step, and linearized around the velocity uH computed in the first step. The two-grid strategy is motivated by the fact that under suitable assumptions, the contribution of uH...

Currently displaying 21 – 40 of 470