Displaying 21 – 40 of 78

Showing per page

Bilinear virial identities and applications

Fabrice Planchon, Luis Vega (2009)

Annales scientifiques de l'École Normale Supérieure

We prove bilinear virial identities for the nonlinear Schrödinger equation, which are extensions of the Morawetz interaction inequalities. We recover and extend known bilinear improvements to Strichartz inequalities and provide applications to various nonlinear problems, most notably on domains with boundaries.

Bipolar Barotropic Non-Newtonian Compressible Fluids

Šárka Matušu-Nečasová, Mária Medviďová-Lukáčová (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We are interested in a barotropic motion of the non-Newtonian bipolar fluids . We consider a special case where the stress tensor is expressed in the form of potentials depending on eii and ( e i j x k ) . We prove the asymptotic stability of the rest state under the assumption of the regularity of the potential forces.

Bipolar barotropic nonnewtonian fluid

Šárka Matušů-Nečasová, Mária Medviďová (1994)

Commentationes Mathematicae Universitatis Carolinae

The paper describes the special situation of barotropic nonnewtonian fluid, where stress tensor can be written in the form of potentials which depend on e i j and ( e i j x k ) . For this case, we prove the existence and uniqueness of weak solution.

Blood Flow Simulation in Atherosclerotic Vascular Network Using Fiber-Spring Representation of Diseased Wall

Yu. Vassilevski, S. Simakov, V. Salamatova, Yu. Ivanov, T. Dobroserdova (2011)

Mathematical Modelling of Natural Phenomena

We present the fiber-spring elastic model of the arterial wall with atherosclerotic plaque composed of a lipid pool and a fibrous cap. This model allows us to reproduce pressure to cross-sectional area relationship along the diseased vessel which is used in the network model of global blood circulation. Atherosclerosis attacks a region of systemic arterial network. Our approach allows us to examine the impact of the diseased region onto global haemodynamics....

Blow up and near soliton dynamics for the L 2 critical gKdV equation

Yvan Martel, Frank Merle, Pierre Raphaël (2011/2012)

Séminaire Laurent Schwartz — EDP et applications

These notes present the main results of [22, 23, 24] concerning the mass critical (gKdV) equation u t + ( u x x + u 5 ) x = 0 for initial data in H 1 close to the soliton. These works revisit the blow up phenomenon close to the family of solitons in several directions: definition of the stable blow up and classification of all possible behaviors in a suitable functional setting, description of the minimal mass blow up in H 1 , construction of various exotic blow up rates in H 1 , including grow up in infinite time.

Blow up dynamic and upper bound on the blow up rate for critical nonlinear Schrödinger equation

Frank Merle, Pierre Raphael (2002)

Journées équations aux dérivées partielles

We consider the critical nonlinear Schrödinger equation i u t = - Δ u - | u | 4 N u with initial condition u ( 0 , x ) = u 0 in dimension N . For u 0 H 1 , local existence in time of solutions on an interval [ 0 , T ) is known, and there exists finite time blow up solutions, that is u 0 such that lim t T < + | u x ( t ) | L 2 = + . This is the smallest power in the nonlinearity for which blow up occurs, and is critical in this sense. The question we address is to understand the blow up dynamic. Even though there exists an explicit example of blow up solution and a class of initial data...

Blow up for the critical gKdV equation. II: Minimal mass dynamics

Yvan Martel, Frank Merle, Pierre Raphaël (2015)

Journal of the European Mathematical Society

We consider the mass critical (gKdV) equation u t + ( u x x + u 5 ) x = 0 for initial data in H 1 . We first prove the existence and uniqueness in the energy space of a minimal mass blow up solution and give a sharp description of the corresponding blow up soliton-like bubble. We then show that this solution is the universal attractor of all solutions near the ground state which have a defocusing behavior. This allows us to sharpen the description of near soliton dynamics obtained in [29].

Blow-up and global existence of a weak solution for a sine-Gordon type quasilinear wave equation

João-Paulo Dias, Mário Figueira (2000)

Bollettino dell'Unione Matematica Italiana

Si considera il problema di Cauchy per l'equazione (cf. [1]): ϕ t t - ϕ x x - ϕ x 2 ϕ x x + sin ϕ = 0 x , t R × R + . Nella prima parte di questo articolo si dimostra, per dati iniziali particolari, un risultato di «blow-up» della soluzione classica locale (in tempo), seguendo le idee introdotte in [8], [2] ed [4]. Nella seconda parte, viene utilizzato il metodo di compattezza per compensazione (cf. [13], [10] ed [5]) ed una estensione del principio delle regioni invarianti (cf. [12]) per dimostrare l'esistenza di una soluzione debole globale entropica....

Blow-up for 3-D compressible isentropic Navier-Stokes-Poisson equations

Shanshan Yang, Hongbiao Jiang, Yinhe Lin (2021)

Czechoslovak Mathematical Journal

We study compressible isentropic Navier-Stokes-Poisson equations in 3 . With some appropriate assumptions on the density, velocity and potential, we show that the classical solution of the Cauchy problem for compressible unipolar isentropic Navier-Stokes-Poisson equations with attractive forcing will blow up in finite time. The proof is based on a contradiction argument, which relies on proving the conservation of total mass and total momentum.

Blow-up for solutions of hyperbolic PDE and spacetime singularities

Alan D. Rendall (2000)

Journées équations aux dérivées partielles

An important question in mathematical relativity theory is that of the nature of spacetime singularities. The equations of general relativity, the Einstein equations, are essentially hyperbolic in nature and the study of spacetime singularities is naturally related to blow-up phenomena for nonlinear hyperbolic systems. These connections are explained and recent progress in applying the theory of hyperbolic equations in this field is presented. A direction which has turned out to be fruitful is that...

Blow-up for the compressible isentropic Navier-Stokes-Poisson equations

Jianwei Dong, Junhui Zhu, Yanping Wang (2020)

Czechoslovak Mathematical Journal

We will show the blow-up of smooth solutions to the Cauchy problems for compressible unipolar isentropic Navier-Stokes-Poisson equations with attractive forcing and compressible bipolar isentropic Navier-Stokes-Poisson equations in arbitrary dimensions under some restrictions on the initial data. The key of the proof is finding the relations between the physical quantities and establishing some differential inequalities.

Currently displaying 21 – 40 of 78