Displaying 61 – 80 of 170

Showing per page

Comportement asymptotique des solutions d’un système d’équations de Schrödinger-Poisson sur un domaine borné de 3

Amna Dabaa (2010)

Annales mathématiques Blaise Pascal

Nous étudions le comportement pour les grands temps de l’équation de Schrödinger-Poisson (NLSP) avec un terme de force extérieure supplémentaire et un terme de dissipation d’ordre zéro, la variable d’espace x étant dans un domaine borné Ω de 3 . Nous démontrons que ce comportement est décrit par un attracteur global de dimension de Hausdorff finie pour la topologie forte de H 0 1 ( Ω ) .

Computation of the drag force on a sphere close to a wall

David Gérard-Varet, Matthieu Hillairet (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider the effect of surface roughness on solid-solid contact in a Stokes flow. Various models for the roughness are considered, and a unified methodology is given to derive the corresponding asymptotics of the drag force in the close-contact limit. In this way, we recover and clarify the various expressions that can be found in previous studies.

Computation of the drag force on a sphere close to a wall

David Gérard-Varet, Matthieu Hillairet (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider the effect of surface roughness on solid-solid contact in a Stokes flow. Various models for the roughness are considered, and a unified methodology is given to derive the corresponding asymptotics of the drag force in the close-contact limit. In this way, we recover and clarify the various expressions that can be found in previous studies.

Computation of the drag force on a sphere close to a wall

David Gérard-Varet, Matthieu Hillairet (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider the effect of surface roughness on solid-solid contact in a Stokes flow. Various models for the roughness are considered, and a unified methodology is given to derive the corresponding asymptotics of the drag force in the close-contact limit. In this way, we recover and clarify the various expressions that can be found in previous studies.

Computation of the fundamental solution of electrodynamics for anisotropic materials

Valery Yakhno, Handan Yaslan, Tatiana Yakhno (2012)

Open Mathematics

A new method for computation of the fundamental solution of electrodynamics for general anisotropic nondispersive materials is suggested. It consists of several steps: equations for each column of the fundamental matrix are reduced to a symmetric hyperbolic system; using the Fourier transform with respect to space variables and matrix transformations, formulae for Fourier images of the fundamental matrix columns are obtained; finally, the fundamental solution is computed by the inverse Fourier transform....

Computing guided modes for an unbounded stratified medium in integrated optics

Fabrice Mahé (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present a finite element method to compute guided modes in a stratified medium. The major difficulty to overcome is related to the unboundedness of the stratified medium. Our method is an alternative to the use of artificial boundary conditions and to the use of integral representation formulae. The domain is bounded in such a way we can write the solution on its lateral boundaries in terms of Fourier series. The series is then truncated for the computations over the bounded domain. The problem...

Computing guided modes for an unbounded stratified medium in integrated optics

Fabrice Mahé (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a finite element method to compute guided modes in a stratified medium. The major difficulty to overcome is related to the unboundedness of the stratified medium. Our method is an alternative to the use of artificial boundary conditions and to the use of integral representation formulae. The domain is bounded in such a way we can write the solution on its lateral boundaries in terms of Fourier series. The series is then truncated for the computations over the bounded domain. The problem...

Conditions implying regularity of the three dimensional Navier-Stokes equation

Stephen Montgomery-Smith (2005)

Applications of Mathematics

We obtain logarithmic improvements for conditions for regularity of the Navier-Stokes equation, similar to those of Prodi-Serrin or Beale-Kato-Majda. Some of the proofs make use of a stochastic approach involving Feynman-Kac-like inequalities. As part of our methods, we give a different approach to a priori estimates of Foiaş, Guillopé and Temam.

Conditions of Prodi-Serrin's type for local regularity of suitable weak solutions to the Navier-Stokes equations

Zdeněk Skalák (2002)

Commentationes Mathematicae Universitatis Carolinae

In the context of suitable weak solutions to the Navier-Stokes equations we present local conditions of Prodi-Serrin’s type on velocity 𝐯 and pressure p under which ( 𝐱 0 , t 0 ) Ω × ( 0 , T ) is a regular point of 𝐯 . The conditions are imposed exclusively on the outside of a sufficiently narrow space-time paraboloid with the vertex ( 𝐱 0 , t 0 ) and the axis parallel with the t -axis.

Confining quantum particles with a purely magnetic field

Yves Colin de Verdière, Françoise Truc (2010)

Annales de l’institut Fourier

We consider a Schrödinger operator with a magnetic field (and no electric field) on a domain in the Euclidean space with a compact boundary. We give sufficient conditions on the behaviour of the magnetic field near the boundary which guarantees essential self-adjointness of this operator. From the physical point of view, it means that the quantum particle is confined in the domain by the magnetic field. We construct examples in the case where the boundary is smooth as well as for polytopes; These...

Currently displaying 61 – 80 of 170