Displaying 881 – 900 of 3659

Showing per page

Estimates based on scale separation for geophysical flows.

François Jauberteau, Roger Temam (2002)

RACSAM

The objective of this work is to obtain theoretical estimates on the large and small scales for geophysical flows. Firstly, we consider the shallow water problem in the one-dimensional case, then in the two-dimensional case. Finally we consider geophysical flows under the hydrostatic hypothesis and the Boussinesq approximation. Scale separation is based on Fourier series, with N models in each spatial direction, and the choice of a cut-off level N1 < N to define large and small scales. We...

Estimates in Besov spaces for transport and transport-diffusion equations with almost Lipschitz coefficients.

Raphaël Danchin (2005)

Revista Matemática Iberoamericana

This paper aims at giving an overview of estimates in general Besov spaces for the Cauchy problem on t = 0 related to the vector field ∂t + v·∇. The emphasis is on the conservation or loss of regularity for the initial data.When ∇u belongs to L1(0,T; L∞) (plus some convenient conditions depending on the functional space considered for the data), the initial regularity is preserved. On the other hand, if ∇v is slightly less regular (e.g. ∇v belogs to some limit space for which the embedding in L∞...

Estimates of lower order derivatives of viscous fluid flow past a rotating obstacle

Reinhard Farwig (2005)

Banach Center Publications

Consider the problem of time-periodic strong solutions of the Stokes system modelling viscous incompressible fluid flow past a rotating obstacle in the whole space ℝ³. Introducing a rotating coordinate system attached to the body yields a system of partial differential equations of second order involving an angular derivative not subordinate to the Laplacian. In a recent paper [2] the author proved L q -estimates of second order derivatives uniformly in the angular and translational velocities, ω and...

Evolution by the vortex filament equation of curves with a corner

Valeria Banica (2013)

Journées Équations aux dérivées partielles

In this proceedings article we shall survey a series of results on the stability of self-similar solutions of the vortex filament equation. This equation is a geometric flow for curves in 3 and it is used as a model for the evolution of a vortex filament in fluid mechanics. The main theorem give, under suitable assumptions, the existence and description of solutions generated by curves with a corner, for positive and negative times. Its companion theorem describes the evolution of perturbations...

Évolution de tourbillon à support compact

Dragoş Iftimie (1999)

Journées équations aux dérivées partielles

On considère l’équation d’Euler incompressible dans le plan. Dans le cas où le tourbillon est positif et à support compact on montre que le support du tourbillon croît au plus comme O [ ( t log t ) ] 1 / 4 , améliorant la borne O ( t 1 / 3 ) obtenue par C. Marchioro. Dans le cas où le tourbillon change de signe, on donne un exemple de tourbillon initial tel que la croissance du diamètre du support du tourbillon est exactement O ( t ) . Enfin, dans le cas du demi-plan et du tourbillon initial positif et à support compact, on montre que le...

Évolution d'une singularité de type cusp dans une poche de tourbillon.

Raphaël Danchin (2000)

Revista Matemática Iberoamericana

We investigate the evolution of singularities in the boundary of a vortex patch for two-dimensional incompressible Euler equations. We are particularly interested in cusp-like singularities which, according to numerical simulations, are stable. In this paper, we first prove that, unlike the case of a corner-like singularity, the cusp-like singularity generates a lipschitzian velocity. We then state a global result of persistence of conormal regularity with respect to vector fields vanishing at a...

Evolution in a migrating population model

Włodzimierz Bąk, Tadeusz Nadzieja (2012)

Applicationes Mathematicae

We consider a model of migrating population occupying a compact domain Ω in the plane. We assume the Malthusian growth of the population at each point x ∈ Ω and that the mobility of individuals depends on x ∈ Ω. The evolution of the probability density u(x,t) that a randomly chosen individual occupies x ∈ Ω at time t is described by the nonlocal linear equation u t = Ω φ ( y ) u ( y , t ) d y - φ ( x ) u ( x , t ) , where φ(x) is a given function characterizing the mobility of individuals living at x. We show that the asymptotic behaviour of u(x,t)...

Currently displaying 881 – 900 of 3659