Geometrische Eigenschaften der Lösungen der Differentialgleichung (1-zz)2wzz - n(n + 1) w= 0.
We survey two problems illustrating geometric-topological and Hamiltonian methods in fluid mechanics: energy relaxation of a magnetic field and conservation laws for ideal fluid motion. More details and results, as well as a guide to the literature on these topics can be found in [3].
This is the first of three papers on the geometry of KDV. It presents what purports to be a foliation of an extensive function space into which all known invariant manifolds of KDV fit naturally as special leaves. The two main themes are addition (each leaf has its private one) and unimodal spectral classes (each leaf has a spectral interpretation).
On sait depuis Maslov, Arnold, etc... associer à presque tout germe de variété lagrangienne ou legendrienne lisse une classe de fonctions oscillantes qui sous des hypothèses génériques à la Thom fournissent des modèles universels pour le comportement d’une onde lumineuse au voisinage de la caustique.Le présent article étend cette construction à une classe de situations où la variété caractéristique est un germe singulier (union de composantes lisses), qui peut néanmoins être stable en ce sens que...
Global and regular solutions of the Navier-Stokes system in cylindrical domains have already been obtained under the assumption of smallness of (1) the derivative of the velocity field with respect to the variable along the axis of cylinder, (2) the derivative of force field with respect to the variable along the axis of the cylinder and (3) the projection of the force field on the axis of the cylinder restricted to the part of the boundary perpendicular to the axis of the cylinder. With the same...
Global existence of regular special solutions to the Navier-Stokes equations describing the motion of an incompressible viscous fluid in a cylindrical pipe has already been shown. In this paper we prove the existence of the global attractor for the Navier-Stokes equations and convergence of the solution to a stationary solution.
This paper is devoted to the global attractors of the tropical climate model. We first establish the global well-posedness of the system. Then by studying the existence of bounded absorbing sets, the global attractor is constructed. The estimates of the Hausdorff dimension and of the fractal dimension of the global attractor are obtained in the end.
The self-consistent chemotaxis-fluid system is considered under no-flux boundary conditions for and the Dirichlet boundary condition for on a bounded smooth domain