Local solution for the Kadomtsev-Petviashvili equation with periodic conditions.
J.P. Isaza, J.L. Mejía, V. Stallbohm (1992)
Manuscripta mathematica
Alain Bensoussan, Jens Frehse (2000)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Alain Bensoussan, Jens Frehse (2010)
ESAIM: Mathematical Modelling and Numerical Analysis
In this article we consider local solutions for stochastic Navier Stokes equations, based on the approach of Von Wahl, for the deterministic case. We present several approaches of the concept, depending on the smoothness available. When smoothness is available, we can in someway reduce the stochastic equation to a deterministic one with a random parameter. In the general case, we mimic the concept of local solution for stochastic differential equations.
Carlos E. Kenig (1995)
Journées équations aux dérivées partielles
Carvajal, Xavier (2004)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Xiuhui Yang (2021)
Applications of Mathematics
This paper proves the local well-posedness of strong solutions to a two-phase model with magnetic field and vacuum in a bounded domain without the standard compatibility conditions.
Carlos E. Kenig, Gigliola Staffilani (1997)
The journal of Fourier analysis and applications [[Elektronische Ressource]]
Yong Zhou (2004)
Annales de l’institut Fourier
In this paper we establish the existence and uniqueness of the local solutions to the incompressible Euler equations in , , with any given initial data belonging to the critical Besov spaces . Moreover, a blowup criterion is given in terms of the vorticity field....
Gang Wu, Jia Yuan (2007)
Applicationes Mathematicae
We study local well-posedness of the Cauchy problem for the generalized Camassa-Holm equation for the initial data u₀(x) in the Besov space with max(3/2,1 + 1/p) < s ≤ m and (p,r) ∈ [1,∞]², where g:ℝ → ℝ is a given -function (m ≥ 4) with g(0)=g’(0)=0, and κ ≥ 0 and γ ∈ ℝ are fixed constants. Using estimates for the transport equation in the framework of Besov spaces, compactness arguments and Littlewood-Paley theory, we get a local well-posedness result.
Peixin Zhang, Mingxuan Zhu (2022)
Applications of Mathematics
We establish the local-in-time existence of a solution to the non-resistive magneto-micropolar fluids with the initial data , and for and any . The initial regularity of the micro-rotational velocity is weaker than velocity of the fluid .
Frédéric Klopp (1995)
Annales de l'institut Fourier
Dans , nous démontrons un résultat de localisation exponentielle pour un opérateur de Schrödinger semi-classique à potentiel périodique perturbé par de petites perturbations aléatoires indépendantes identiquement distribuées placées au fond de chaque puits. Pour ce faire, on montre que notre opérateur, restreint à un intervalle d’énergie convenable, est unitairement équivalent à une matrice aléatoire infinie dont on contrôle bien les coefficients. Puis, pour ce type de matrices, on prouve un résultat...
B.H. Gilding, M.A. Herrero (1988)
Mathematische Annalen
Yurinsky, V.V. (2001)
Siberian Mathematical Journal
Konno, Kimiaki, Kakuhata, Hiroshi (2006)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Gimyong Hong, Hakho Hong (2022)
Applications of Mathematics
We are concerned with a transmission problem for the Kirchhoff plate equation where one small part of the domain is made of a viscoelastic material with the Kelvin-Voigt constitutive relation. We obtain the logarithmic stabilization result (explicit energy decay rate), as well as the wellposedness, for the transmission system. The method is based on a new Carleman estimate to obtain information on the resolvent for high frequency. The main ingredient of the proof is some careful analysis for the...
Fuyi Xu, Xiaojing Xu, Jia Yuan (2012)
Applicationes Mathematicae
We discuss the 3D incompressible micropolar fluid equations, and give logarithmically improved regularity criteria in terms of both the velocity field and the pressure in Morrey-Campanato spaces, BMO spaces and Besov spaces.
Jean Ginibre, Giorgio Velo (1999)
Journées équations aux dérivées partielles
We study the theory of scattering for the Hartree equation with long range potentials. We prove the existence of modified wave operators with no size restriction on the data and we determine the asymptotic behaviour in time of solutions in the range of the wave operators.
Anne Boutet de Monvel, Dmitry Shepelsky (2009)
Annales de l’institut Fourier
We study the long-time behavior of solutions of the initial-boundary value (IBV) problem for the Camassa–Holm (CH) equation on the half-line . The paper continues our study of IBV problems for the CH equation, the key tool of which is the formulation and analysis of associated Riemann–Hilbert factorization problems. We specify the regions in the quarter space-time plane , having qualitatively different asymptotic pictures, and give the main terms of the asymptotics in terms of spectral data...
Nicolas Burq, Laurent Thomann, Nikolay Tzvetkov (2013)
Annales de l’institut Fourier
In this article, we first present the construction of Gibbs measures associated to nonlinear Schrödinger equations with harmonic potential. Then we show that the corresponding Cauchy problem is globally well-posed for rough initial conditions in a statistical set (the support of the measures). Finally, we prove that the Gibbs measures are indeed invariant by the flow of the equation. As a byproduct of our analysis, we give a global well-posedness and scattering result for the critical and super-critical...
Jolanta Socała, Wojciech M. Zajączkowski (2012)
Applicationes Mathematicae
We examine the Navier-Stokes equations with homogeneous slip boundary conditions coupled with the heat equation with homogeneous Neumann conditions in a bounded domain in ℝ³. The domain is a cylinder along the x₃ axis. The aim of this paper is to show long time estimates without assuming smallness of the initial velocity, the initial temperature and the external force. To prove the estimate we need however smallness of the L₂ norms of the x₃-derivatives of these three quantities.