Displaying 1401 – 1420 of 3679

Showing per page

Lagrangian approximations and weak solutions of the Navier-Stokes equations

Werner Varnhorn (2008)

Banach Center Publications

The motion of a viscous incompressible fluid flow in bounded domains with a smooth boundary can be described by the nonlinear Navier-Stokes equations. This description corresponds to the so-called Eulerian approach. We develop a new approximation method for the Navier-Stokes equations in both the stationary and the non-stationary case by a suitable coupling of the Eulerian and the Lagrangian representation of the flow, where the latter is defined by the trajectories of the particles of the fluid....

Landau-Ginzburg models in real mirror symmetry

Johannes Walcher (2011)

Annales de l’institut Fourier

In recent years, mirror symmetry for open strings has exhibited some new connections between symplectic and enumerative geometry (A-model) and complex algebraic geometry (B-model) that in a sense lie between classical and homological mirror symmetry. I review the rôle played in this story by matrix factorizations and the Calabi-Yau/Landau-Ginzburg correspondence.

Large data local solutions for the derivative NLS equation

Ioan Bejenaru, Daniel Tataru (2008)

Journal of the European Mathematical Society

We consider the derivative NLS equation with general quadratic nonlinearities. In [2] the first author has proved a sharp small data local well-posedness result in Sobolev spaces with a decay structure at infinity in dimension n = 2 . Here we prove a similar result for large initial data in all dimensions n 2 .

Large deviations and support results for nonlinear Schrödinger equations with additive noise and applications

Éric Gautier (2005)

ESAIM: Probability and Statistics

Sample path large deviations for the laws of the solutions of stochastic nonlinear Schrödinger equations when the noise converges to zero are presented. The noise is a complex additive gaussian noise. It is white in time and colored in space. The solutions may be global or blow-up in finite time, the two cases are distinguished. The results are stated in trajectory spaces endowed with topologies analogue to projective limit topologies. In this setting, the support of the law of the solution is also...

Large deviations and support results for nonlinear Schrödinger equations with additive noise and applications

Éric Gautier (2010)

ESAIM: Probability and Statistics

Sample path large deviations for the laws of the solutions of stochastic nonlinear Schrödinger equations when the noise converges to zero are presented. The noise is a complex additive Gaussian noise. It is white in time and colored in space. The solutions may be global or blow-up in finite time, the two cases are distinguished. The results are stated in trajectory spaces endowed with topologies analogue to projective limit topologies. In this setting, the support of the law of the solution is...

Large time regular solutions to the MHD equations in cylindrical domains

Wisam Alame, Wojciech M. Zajączkowski (2011)

Applicationes Mathematicae

We prove the large time existence of solutions to the magnetohydrodynamics equations with slip boundary conditions in a cylindrical domain. Assuming smallness of the L₂-norms of the derivatives of the initial velocity and of the magnetic field with respect to the variable along the axis of the cylinder, we are able to obtain an estimate for the velocity and the magnetic field in W 2 , 1 without restriction on their magnitude. Then the existence follows from the Leray-Schauder fixed point theorem.

Le equazioni di evoluzione dei continui ferromagnetici

P. Podio-Guidugli (2001)

Bollettino dell'Unione Matematica Italiana

This expository paper is meant to be a faithful account the invited lecture I gave in Naples on September 14, 1999, during the 16th Congress of U.M.I., the Italian Mathematical Union. In Section 2, I consider the Gilbert equation, the parabolic equation that rules the evolution of the magnetization vector in a rigid ferromagnet. Among the issues I here discuss are the relations of the Gilbert equation to the harmonic map equation and its heat flow, the existence of global-in-time weak solutions,...

Le problème de Riemann Hilbert sur une variété analytique complexe

R. Gérard (1969)

Annales de l'institut Fourier

Le problème de Riemann-Hilbert sur une variété complexe V s’énonce de la manière suivante : soit A un sous-ensemble analytique de V de codimension un en chacun de ses points et χ une représentation de Π 1 ( V - A ) dans Gl ( n , C . Existe-t-il un système de Pfaff d f = ω f du type de Fuchs où ω Ω n X n ( V , A ) (J. de Math. Pures et Appl., 47, (1968)) dont la monodromie soit la classe de la représentation χ  ?On montre en particulier que si V est une variété de Stein contractile et si les composantes irréductibles de A sont sans singularités...

Currently displaying 1401 – 1420 of 3679