Displaying 21 – 40 of 128

Showing per page

Application of Rothe's method to a parabolic inverse problem with nonlocal boundary condition

Yong-Hyok Jo, Myong-Hwan Ri (2022)

Applications of Mathematics

We consider an inverse problem for the determination of a purely time-dependent source in a semilinear parabolic equation with a nonlocal boundary condition. An approximation scheme for the solution together with the well-posedness of the problem with the initial value u 0 H 1 ( Ω ) is presented by means of the Rothe time-discretization method. Further approximation scheme via Rothe’s method is constructed for the problem when u 0 L 2 ( Ω ) and the integral kernel in the nonlocal boundary condition is symmetric.

Boundary observability for the space semi-discretizations of the 1 – d wave equation

Juan Antonio Infante, Enrique Zuazua (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider space semi-discretizations of the 1-d wave equation in a bounded interval with homogeneous Dirichlet boundary conditions. We analyze the problem of boundary observability, i.e., the problem of whether the total energy of solutions can be estimated uniformly in terms of the energy concentrated on the boundary as the net-spacing h → 0. We prove that, due to the spurious modes that the numerical scheme introduces at high frequencies, there is no such a uniform bound. We prove however a...

Conservation schemes for convection-diffusion equations with Robin boundary conditions

Stéphane Flotron, Jacques Rappaz (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this article, we present a numerical scheme based on a finite element method in order to solve a time-dependent convection-diffusion equation problem and satisfy some conservation properties. In particular, our scheme is able to conserve the total energy for a heat equation or the total mass of a solute in a fluid for a concentration equation, even if the approximation of the velocity field is not completely divergence-free. We establish a priori errror estimates for this scheme and we give some...

Convergence of Fourier spectral method for resonant long-short nonlinear wave interaction

Abdur Rashid, Shakaib Akram (2010)

Applications of Mathematics

In this paper, the evolution equations with nonlinear term describing the resonance interaction between the long wave and the short wave are studied. The semi-discrete and fully discrete Crank-Nicholson Fourier spectral schemes are given. An energy estimation method is used to obtain error estimates for the approximate solutions. The numerical results obtained are compared with exact solution and found to be in good agreement.

Convergence of Rothe's method in Hölder spaces

Norio Kikuchi, Jozef Kačur (2003)

Applications of Mathematics

The convergence of Rothe’s method in Hölder spaces is discussed. The obtained results are based on uniform boundedness of Rothe’s approximate solutions in Hölder spaces recently achieved by the first author. The convergence and its rate are derived inside a parabolic cylinder assuming an additional compatibility conditions.

Convergent semidiscretization of a nonlinear fourth order parabolic system

Ansgar Jüngel, René Pinnau (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

A semidiscretization in time of a fourth order nonlinear parabolic system in several space dimensions arising in quantum semiconductor modelling is studied. The system is numerically treated by introducing an additional nonlinear potential. Exploiting the stability of the discretization, convergence is shown in the multi-dimensional case. Under some assumptions on the regularity of the solution, the rate of convergence proves to be optimal.

Convergent semidiscretization of a nonlinear fourth order parabolic system

Ansgar Jüngel, René Pinnau (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

A semidiscretization in time of a fourth order nonlinear parabolic system in several space dimensions arising in quantum semiconductor modelling is studied. The system is numerically treated by introducing an additional nonlinear potential. Exploiting the stability of the discretization, convergence is shown in the multi-dimensional case. Under some assumptions on the regularity of the solution, the rate of convergence proves to be optimal.

Description of the multi-dimensional finite volume solver EULER

Pavel Šolín, Karel Segeth (2002)

Applications of Mathematics

This paper is aimed at the description of the multi-dimensional finite volume solver EULER, which has been developed for the numerical solution of the compressible Euler equations during several last years. The present overview of numerical schemes and the explanation of numerical techniques and tricks which have been used for EULER could be of certain interest not only for registered users but also for numerical mathematicians who have decided to implement a finite volume solver themselves. This...

Direct approach to mean-curvature flow with topological changes

Petr Pauš, Michal Beneš (2009)

Kybernetika

This contribution deals with the numerical simulation of dislocation dynamics. Dislocations are described by means of the evolution of a family of closed or open smooth curves Γ ( t ) : S 2 , t 0 . The curves are driven by the normal velocity v which is the function of curvature κ and the position. The evolution law reads as: v = - κ + F . The motion law is treated using direct approach numerically solved by two schemes, i. e., backward Euler semi-implicit and semi-discrete method of lines. Numerical stability is improved...

Discontinuous Galerkin method for nonlinear convection-diffusion problems with mixed Dirichlet-Neumann boundary conditions

Oto Havle, Vít Dolejší, Miloslav Feistauer (2010)

Applications of Mathematics

The paper is devoted to the analysis of the discontinuous Galerkin finite element method (DGFEM) applied to the space semidiscretization of a nonlinear nonstationary convection-diffusion problem with mixed Dirichlet-Neumann boundary conditions. General nonconforming meshes are used and the NIPG, IIPG and SIPG versions of the discretization of diffusion terms are considered. The main attention is paid to the impact of the Neumann boundary condition prescribed on a part of the boundary on the truncation...

Error estimate for a fully discrete spectral scheme for Korteweg-de Vries-Kawahara equation

Ujjwal Koley (2012)

Open Mathematics

We are concerned with convergence of spectral method for the numerical solution of the initial-boundary value problem associated to the Korteweg-de Vries-Kawahara equation (Kawahara equation, in short), which is a transport equation perturbed by dispersive terms of the 3rd and 5th order. This equation appears in several fluid dynamics problems. It describes the evolution of small but finite amplitude long waves in various problems in fluid dynamics. These equations are discretized in space by the...

Currently displaying 21 – 40 of 128