Continuum model of the two-component Becker-Döring equations.
A Discontinuous Galerkin method is used for to the numerical solution of the time-domain Maxwell equations on unstructured meshes. The method relies on the choice of local basis functions, a centered mean approximation for the surface integrals and a second-order leap-frog scheme for advancing in time. The method is proved to be stable for cases with either metallic or absorbing boundary conditions, for a large class of basis functions. A discrete analog of the electromagnetic energy is conserved...
A Discontinuous Galerkin method is used for to the numerical solution of the time-domain Maxwell equations on unstructured meshes. The method relies on the choice of local basis functions, a centered mean approximation for the surface integrals and a second-order leap-frog scheme for advancing in time. The method is proved to be stable for cases with either metallic or absorbing boundary conditions, for a large class of basis functions. A discrete analog of the electromagnetic energy is conserved...
As an example of a simple constrained geometric non-linear wave equation, we study a numerical approximation of the Maxwell Klein Gordon equation. We consider an existing constraint preserving semi-discrete scheme based on finite elements and prove its convergence in space dimension 2 for initial data of finite energy.
As an example of a simple constrained geometric non-linear wave equation, we study a numerical approximation of the Maxwell Klein Gordon equation. We consider an existing constraint preserving semi-discrete scheme based on finite elements and prove its convergence in space dimension 2 for initial data of finite energy.
We consider a degenerate parabolic system which models the evolution of nematic liquid crystal with variable degree of orientation. The system is a slight modification to that proposed in [Calderer et al., SIAM J. Math. Anal.33 (2002) 1033–1047], which is a special case of Ericksen's general continuum model in [Ericksen, Arch. Ration. Mech. Anal.113 (1991) 97–120]. We prove the global existence of weak solutions by passing to the limit in a regularized system. Moreover, we propose a practical...
A high-order compact finite difference scheme for a fully nonlinear parabolic differential equation is analyzed. The equation arises in the modeling of option prices in financial markets with transaction costs. It is shown that the finite difference solution converges locally uniformly to the unique viscosity solution of the continuous equation. The proof is based on a careful study of the discretization matrices and on an abstract convergence result due to Barles and Souganides.
A high-order compact finite difference scheme for a fully nonlinear parabolic differential equation is analyzed. The equation arises in the modeling of option prices in financial markets with transaction costs. It is shown that the finite difference solution converges locally uniformly to the unique viscosity solution of the continuous equation. The proof is based on a careful study of the discretization matrices and on an abstract convergence result due to Barles and Souganides.
We propose a numerical scheme to compute the motion of a two-dimensional rigid body in a viscous fluid. Our method combines the method of characteristics with a finite element approximation to solve an ALE formulation of the problem. We derive error estimates implying the convergence of the scheme.